Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model study of the Atlantic thermohaline circulation during the last glacial maximum

Abstract

STABLE isotope measurements in deep-sea sediment cores have indi-cated that the Atlantic thermohaline circulation experienced sig-nificant changes during the last glacial maximum: the North Atlantic Deep Water (NADW) was shallower than today and the Antarctic Bottom Water (AABW) penetrated much farther north1–6. Numerical ocean models have, so far, been unable to simulate these circulation changes realistically7. Here we show that a zonally averaged, three-basin ocean model, driven by glacial boundary conditions8–10, reproduces the main trends of the geo-chemically constrained glacial Atlantic circulation. In addition, we provide quantitative estimates of the meridional water transport during glacial times. Our results suggest that the glacial production of AABW was slightly higher than at present, whereas that of NADW was reduced by 40%, resulting in an intermediate circulation cell which closed within the Atlantic basin. We also show that the strength of the Atlantic conveyor belt strongly depends on the surface density contrast between the high latitudes of the Northern and Southern hemispheres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boyle, E. A. & Keigwin, L. Science 218, 784–787 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Boyle, E. A. & Keigwin, L. Nature 330, 35–40 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Duplessy, J. C. et al. Paleoceanography 3, 343–360 (1988).

    Article  ADS  Google Scholar 

  4. Broecker, W. S., Peng, T.-H., Trumbore, S., Bonani, G. & Wolfi, W. Globl Biogeochem. Cycles 4, 103–117 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Oppo, D. W. & Lehman, S. J. Science 259, 1148–1152 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Sarnthein, M. et al. Paleoceanography 9, 209–267 (1994).

    Article  ADS  Google Scholar 

  7. Lautenschlager, M., Mikolajewicz, U., Maier-Reimer, E. & Heinze, C. Paleoceanography 7, 769–782 (1992).

    Article  ADS  Google Scholar 

  8. Lautenschlager, M. & Herterich, K. J. geophys. Res. 95, 22547–22557 (1990).

    Article  ADS  Google Scholar 

  9. CLIMAP Project Members Map Chart Series MC-36 (Geol. Soc. Am., Boulder, 1981).

  10. Duplessy, J. C. et al. Oceanologica Acta 14, 311–323 (1991).

    CAS  Google Scholar 

  11. Hovine, S. & Fichefet, T. Clim. Dyn. 10, 313–331 (1994).

    Google Scholar 

  12. Wright, D. G. & Stocker, T. F. J. phys. Oceanogr. 21, 1713–1724 (1991).

    Article  ADS  Google Scholar 

  13. Wright, D. G. & Stocker, T. F. J. geophys. Res. 97, 12707–12730 (1992).

    Article  ADS  Google Scholar 

  14. Bryan, K. J. phys. Oceanogr. 14, 666–673 (1984).

    Article  ADS  Google Scholar 

  15. Fairbanks, R. G. Nature 342, 637–642 (1989).

    Article  ADS  Google Scholar 

  16. Gordon, A. L. J. geophys. Res. 91, 5037–5046 (1986).

    Article  ADS  Google Scholar 

  17. Labeyrie, L. D. et al. Quat. Sci. Rev. 11, 401–413 (1992).

    Article  ADS  Google Scholar 

  18. Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Nature 327, 477–482 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Stocker, T. F., Wright, D. G. & Broecker, W. S. Paleoceanography 7, 529–541 (1992).

    Article  ADS  Google Scholar 

  20. Hughes, T. M. C. & Weaver, A. J. J. phys. Oceanogr. 24, 619–637 (1994).

    Article  ADS  Google Scholar 

  21. Hellerman, S. & Rosenstein, M. J. phys. Oceanogr. 13, 1093–1104 (1983).

    Article  ADS  Google Scholar 

  22. Levitus, S. Climatological Atlas of the World Ocean (Prof. pap. 13, NOAA, Boulder, 1982).

    Google Scholar 

  23. Gordon, A. L. & Molinelli, E. J. in Southern Ocean Atlas (ed. Gordon, A. L.) 3–11, plates 1– 233 (Amerind, New Delhi, 1986).

    Google Scholar 

  24. England, M. J. phys. Oceanogr. 22, 918–926 (1992).

    Article  ADS  Google Scholar 

  25. Rahmstorf, S. Nature 372, 86–89 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fichefet, T., Hovine, S. & Duplessy, JC. A model study of the Atlantic thermohaline circulation during the last glacial maximum. Nature 372, 252–255 (1994). https://doi.org/10.1038/372252a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372252a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing