Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet

Abstract

SEVERAL models have been proposed for the geodynamical evolution of the Tibet–Himalayas collision zone1–6. It is now generally recognized that the high elevations of the region have been caused by mechanical thickening of the crust and flow in the mantle, but there is debate as to whether the thickening has occurred by the underthrusting of Indian crust under Tibet, or by distributed shortening and thickening of the Tibetan crust as India has pushed northwards into it. Here we address this question using seismic measurements of heterogeneity and anisotropy at depth, obtained with a temporary teleseismic array spanning 500km from the Lesser Himalayas to central Tibet (Fig. 1). We observe a significant change in seismic anisotropy across the Indus–Tsangpo suture (ITS), suggesting a change in mode or direction of deformation at depth. In the Himalayas, our results are consistent with the stacking of Indian and Tibetan lithospheres, whereas north of the ITS the data indicate ductile flow in the mantle and show no sign of the Indian lithosphere.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ni, J. & Barazangi, M. J. geophys. Res. 89, 1147–1163 (1984).

    Article  ADS  Google Scholar 

  2. Molnar, P. Phil. Trans. R. Soc. A326, 33–88 (1988).

    Article  ADS  Google Scholar 

  3. England, P. & Houseman, G. J. geophys. Res. 94, 17561–17579 (1989).

    Article  ADS  Google Scholar 

  4. Hirn, A. et al. Nature 307, 25–27 (1984).

    Article  ADS  Google Scholar 

  5. Le Pichon, X., Fournier, M. & Jolivet, L. Tectonics 11, 1085–1098 (1992).

    Article  ADS  Google Scholar 

  6. Armijo, R., Tapponnier, P. & Han, T. J. geophys. Res. 94, 2787–2838 (1989).

    Article  ADS  Google Scholar 

  7. Silver, P. & Chan, W. W. J. geophys. Res. 96, 16429–16454 (1991).

    Article  ADS  Google Scholar 

  8. Vinnik, L. P., Makeyeva, L. I., Milev, A. & Usenko, A. Y. Geophys. J. Int. 111, 433–447 (1992).

    Article  ADS  Google Scholar 

  9. Nicolas, A. & Christensen, N. I. in Composition, Structure and Dynamics of the Lithosphere—Asthenosphere System (eds Fuchs, K. & Froidevaux, C.) 111–123 (Geodyn. Ser. 16, Am. geophys. Un., Washington DC, 1987).

    Book  Google Scholar 

  10. Makeyeva, L. I., Vinnik, L. P. & Roecker, S. W. Nature 358, 144–147 (1992).

    Article  ADS  Google Scholar 

  11. Gao, S. et al. Nature 371, 149–151 (1984).

    Article  ADS  Google Scholar 

  12. Molnar, P. Nature 358, 105–106 (1992).

    Article  ADS  Google Scholar 

  13. Avouac, J. C. & Taponnier, P. Geophys. Res. Lett. 20, 895–898 (1993).

    Article  ADS  Google Scholar 

  14. Gripp, A. E. & Gordon, R. G. Geophys. Res. Lett 17, 1109–1112 (1990).

    Article  ADS  Google Scholar 

  15. McNamara, D. E., Owens, T. J., Silver, P. G. & Wu, F. T. J. geophys. Res. 99, 13655–13665 (1994).

    Article  ADS  Google Scholar 

  16. Hirn, A. et al. Nature 307, 23–25 (1994).

    Article  ADS  Google Scholar 

  17. Barazangi, M. & Ni, J. Geology 10, 179–185 (1982).

    Article  ADS  Google Scholar 

  18. Brandon, C. & Romanowicz, B. J. geophys. Res. 91, 6547–6564 (1986).

    Article  ADS  Google Scholar 

  19. Bourjot, L. & Romanowicz, B. Geophys. Res. Lett. 19, 881–884 (1992).

    Article  ADS  Google Scholar 

  20. Molnar, P. Earth planet. Sci. Lett. 101, 68–77 (1990).

    Article  ADS  Google Scholar 

  21. Mavko, G. M. J. geophys. Res. 85, 5173–5189 (1990).

    Article  ADS  Google Scholar 

  22. Wu, G. J., Xiao, X. C. & Li, T. D. Global Geoscience Transect Vol. 3 (Am. Geophys. Un., Washington DC, 1991).

    Google Scholar 

  23. Coulon, C., Maluski, H., Bollinger, L. & Wang, S. Earth planet. Sci. Lett. 79, 281–302 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Turner, S., Sandiford, M. & Foden, J. Geology 20, 931–934 (1992).

    Article  ADS  Google Scholar 

  25. Molnar, P. & Chen, W. P. J. geophys. Res. 88, 1180–1196 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirn, A., Jiang, M., Sapin, M. et al. Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature 375, 571–574 (1995). https://doi.org/10.1038/375571a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375571a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing