Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A latitudinal gradient in carbon turnover times in forest soils

Abstract

ATTEMPTS to model the global carbon cycle, and anthropogenic modifications to carbon flow between the atmospheric, oceanic and terrestrial carbon reservoirs, commonly rely on values assumed for the 13C/12C ratio and 'bomb-spike' 14C signature of carbon in each reservoir1,2. A large proportion of the carbon in the terrestrial biosphere resides in the soil organic carbon (SOC) pool3, most of which is derived from plants that assimilate carbon via the C3 photosynthetic pathway4. Here we report measurements of the 13C and 14C signatures of particulate organic carbon from surface soils of C3 biomes from a global distribution of low-altitude, non-water-stressed locations. We find that there is currently a latitudinal gradient in the signature, with low-latitude soils being relatively depleted in 13C. The 14C signatures indicate that today's gradient is due to a latitudinal gradient in the residence time of the soil organic carbon, coupled with anthropogenic modifications to the 13C/12C ratio of atmospheric CO2 (for example by fossil-fuel burning5). The long residence times (tens of years) of particulate organic carbon from high-latitude soils provide empirical evidence that if fluxes of carbon from vegetation to the soil increase, these soils have the capacity to act as a carbon sink on decadal timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ciais, P. et al. J. geophys. Res. 100, 5051–5070 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Trumbore, S. E. Global biogeochem. Cycles 7, 275–290 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Siegenthaler, U. & Sarmiento, J. L. Nature 365, 119–125 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Lloyd, J. J. & Farquhar, G. D. Oecologia 99, 201–215 (1994).

    Article  ADS  Google Scholar 

  5. Freidli, H. et al. Nature 324, 237–238 (1986).

    Article  ADS  Google Scholar 

  6. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. Planta 149, 78–90 (1980).

    Article  CAS  Google Scholar 

  7. Stewart, G. R., Turnbull, M. H., Schmidt, S. & Erskine, P. D. Aust. J. Pl. Physiol. 22, 51–55 (1995).

    Google Scholar 

  8. Ehrlinger, J. R., Field, C. B., Lin, Z.-F. & Kuo, C.-Y. Oecologia 70, 520–526 (1986).

    Article  ADS  Google Scholar 

  9. Körner, Ch., Farquhar, G. D. & Roksandic, Z. Oecologia 74, 623–632 (1988).

    Article  ADS  Google Scholar 

  10. Van der Merwe, N. J. & Medina, E. Geochim. cosmochim. Acta 53, 1091–1094 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Balesdent, J., Girardin, C. & Mariotti, A. Ecology 74, 1713–1721 (1993).

    Article  Google Scholar 

  12. Stuiver, M. & Braziunas, T. F. Nature 328, 58–60 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Schimel, D. S. et al. Global biogeochem. Cycles 8, 279–293 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Schimel, D. S. Global Change Biol. 1, 77–91 (1995).

    Article  ADS  Google Scholar 

  15. Kauppi, P. E., Mielikäinen, K. & Kuusela, K. Science 256, 70–74 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Schindler, D. W. & Bayley, S. E. Global biogeochem. Cycles 7, 717–733 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Lloyd, J. & Taylor, J. A. Functional Ecol 8, 315–323 (1994).

    Article  Google Scholar 

  18. Oechel, W. C. et al. Nature 361, 520–523 (1993).

    Article  ADS  Google Scholar 

  19. Bird, M. I., Haberle, S. G. & Chivas, A. R. Global biogeochem. Cycles 8, 13–22 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, M., Chivas, A. & Head, J. A latitudinal gradient in carbon turnover times in forest soils. Nature 381, 143–146 (1996). https://doi.org/10.1038/381143a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381143a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing