Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large-scale structure at the core–mantle boundary from diffracted waves

Abstract

AT the base of the Earth's mantle is a region, called D″, which serves as a thermal and chemical boundary layer between the silicate mantle and the liquid-iron outer core1,2. Tomographic models of mantle compressional-wave velocity (vp) have their worst resolution in D″, owing to limited ray sampling3–5, but have hinted at large-scale lateral variations there. Here I use a new technique, which has its greatest resolution within D″, to produce a map of the large-scale vp variations within D″. The technique compares the arrival times of waves that have been refracted across and diffracted around the core–mantle boundary (CMB). The diffracted waves travel a long way in D″, making them excellent probes of this layer, and the differential technique removes many effects arising from ray paths outside of D″ (ref. 6). The new map provides an image of the continent-sized variations at the CMB that is complementary to existing shear-wave data7,8, and similarities between the map and projections of ancient subducted lithosphere9 verify previous suggestions10 of a strong coupling between surface plate tectonics and the base of the mantle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Loper, D. E. & Lay, T. J. geophys. Res. 100, 6397–6420 (1995).

    Article  ADS  Google Scholar 

  2. Lay, T. Eos 70, 49, 54–55, 58–59 (1989).

    Article  ADS  Google Scholar 

  3. Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y. Phys. Earth planet. Inter. 59, 294–328 (1990).

    Article  ADS  Google Scholar 

  4. Pulliam, R. J., Vasco, D. W. & Johnson, L. R. J. geophys. Res. 98, 699–734 (1993).

    Article  ADS  Google Scholar 

  5. Vasco, D. W., Johnson, L. R., Pulliam, R. J. & Earle, P. S. J. geophys. Res. 99, 13727–13755 (1994).

    Article  ADS  Google Scholar 

  6. Wysession, M. E., Valenzuela, R. W., Bartkó, L. & Zhu, A.-N. Phys. Earth planet. Inter. 92, 67–84 (1995).

    Article  ADS  Google Scholar 

  7. Su, W., Woodward, R. L. & Dziewonski, A. M. J. geophys. Res. 99, 6945–6981 (1994).

    Article  ADS  Google Scholar 

  8. Liu, X.-F., Su, W.-J. & Dziewonski, A. M. Eos (Spring mtg suppl.) 75 (16), 232 (1994).

    Google Scholar 

  9. Ricard, Y., Richards, M., Lithgow-Bertelloni, C. & Le Stunff, Y. J. geophys. Res. 98, 21895–21909 (1993).

    Article  ADS  Google Scholar 

  10. Davies, G. F. J. geophys. Res. 89, 6017–6040 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Revenaugh, J. & Jordan, T. H. J. geophys. Res. 96, 19811–19824 (1991).

    Article  ADS  Google Scholar 

  12. Houard, S. & Nataf, H.-C. Phys. Earth planet. Inter. 72, 264–275 (1992).

    Article  ADS  Google Scholar 

  13. Vidale, J. E. & Benz, H. M. Nature 361, 529–532 (1993).

    Article  ADS  Google Scholar 

  14. Kendall, J. M. & Shearer, P. M. J. geophys. Res. 99, 11575–11590 (1994).

    Article  ADS  Google Scholar 

  15. Gamero, E. J. & Helmberger, D. V. Geophys. Res. Lett. 23, 977–980 (1996).

    Article  ADS  Google Scholar 

  16. Maupin, V. Phys. Earth planet. Inter. 87, 1–32 (1994).

    Article  ADS  Google Scholar 

  17. Kendall, J.-M. & Silver, P. G. Nature 381, 409–412 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Wysession, M. E., Okal, E. A. & Bina, C. R. J. geophys. Res. 97, 8749–8764 (1992).

    Article  ADS  Google Scholar 

  19. Souriau, A. & Poupinet, G. Phys. Earth planet Inter. 84, 227–234 (1994).

    Article  ADS  Google Scholar 

  20. Woodward, R. L. & Masters, G. Nature 352, 231–233 (1991).

    Article  ADS  Google Scholar 

  21. Wysession, M. E., Bartkó, L. & Wilson, J. J. geophys. Res. 100, 8351 (1995).

    Article  ADS  Google Scholar 

  22. Grand, S. P. J. geophys. Res. 99, 11591–11622 (1994).

    Article  ADS  Google Scholar 

  23. Silver, P. G. & Bina, C. R. Geophys. Res. Lett. 20, 1135–1138 (1993).

    Article  ADS  Google Scholar 

  24. Garnero, E. J. & Helmberger, D. V. J. geophys. Res. 98, 8225–8241 (1993).

    Article  ADS  Google Scholar 

  25. Kennett, B. L. N. Seismic Wave Propagation in Stratified Media (Cambridge Univ. Press, Cambridge, 1983).

    Google Scholar 

  26. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  27. Song, X. & Helmberger, D. V. Geophys. Res. Lett. 20, 2591–2594 (1993).

    Article  ADS  Google Scholar 

  28. Menke, W. Geophysical Data Analysis: Discrete Inverse Theory 54–55 (Academic, San Diego, 1989).

    MATH  Google Scholar 

  29. Robertson, G. S. & Woodhouse, J. H. Eos (Fall mtg suppl.) 76 (46), 385 (1995).

    Google Scholar 

  30. Lay, T. A. Rev. Earth planet. Sci. 22, 33–61 (1994).

    Article  ADS  Google Scholar 

  31. Van der Hilst, R. D. Nature 374, 154–157 (1995).

    Article  ADS  CAS  Google Scholar 

  32. Dziewonski, A. M., Forte, A. M., Su, W.-J. & Woodward, R. L. in Relating Geophysical Structures and Processes: The Jeffreys Volume (eds Aki, K. & Dmowska, R.) 67–105 (Am. Geophys. Union, Washington DC, 1993).

    Google Scholar 

  33. Olson, P., Schubert, G. & Anderson, C. Nature 327, 409–413 (1987).

    Article  ADS  Google Scholar 

  34. Zandt, G. & Ammon, C. J. Nature 374, 152–154 (1995).

    Article  ADS  CAS  Google Scholar 

  35. Bloxham, J. & Jackson, A. Geophys. Res. Let. 17, 1997–2000 (1990).

    Article  ADS  Google Scholar 

  36. Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A. & Schubert, G. Nature 361, 699–704 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wysession, M. Large-scale structure at the core–mantle boundary from diffracted waves. Nature 382, 244–248 (1996). https://doi.org/10.1038/382244a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/382244a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing