Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection

Abstract

Macrophage type-I and type-II class-A scavenger receptors (MSR-A) are implicated in the pathological deposition of cholesterol during atherogenesis as a result of receptor-mediated uptake of modified low-density lipoproteins (mLDL)1–6. MSR-A can bind an extraordinarily wide range of ligands, including bacterial pathogens7, and also mediates cation-independent macrophage adhesion in vitro8. Here we show that targeted disruption of the MSR-A gene in mice results in a reduction in the size of atherosclerotic lesions in an animal deficient in apolipoprotein E. Macrophages from MSR-A-deficient mice show a marked decrease in mLDL uptake in vitro, whereas mLDL clearance from plasma occurs at a normal rate, indicating that there may be alternative mechanisms for removing mLDL from the circulation. In addition, MSR-A-knockout mice show an increased susceptibility to infection with Listeria monocytogenes or herpes simplex virus type-1, indicating that MSR-A may play a part in host defence against pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, M. S. & Goldstein, J. L. Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52, 223–261 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Kodama, T. et al. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature 343, 531–570 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Rohrer, L., Freeman, M., Kodama, T., Penman, M. & Krieger, M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 343, 570–572 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Krieger, M. & Herz, J. Structures and functions of multiligand lipoprotein receptors: Macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu. Rev. Biochem. 63, 601–637 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. & Witztum, J. L. Beyond cholesterol. Modifcations of low-density lipoprotein that increase its atherogenicity. N. Engl. J. Med. 320, 915–924 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Naito, M. et al. Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and foam cells in atherosclerotic lesions. Am. J. Path. 141, 591–599 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dunne, D. W., Resnick, D., Greenberg, J., Krieger, M. & Joiner, K. A. The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid. Proc. Natl Acad. Sci. USA 91, 1863–1867 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fraser, I. P., Hughes, D. A. & Gordon, S. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 364, 343–346 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kodama, T., Reddy, P., Kishimoto, C. & Krieger, M. Purification and characterization of a bovine acetyle low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 85, 9238–9242 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hughes, D. A., Fraser, I. P. & Gordon, S. Murine macrophage scavenger receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur. J. Immunol. 25, 466–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt, A. M. et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J. Biol. Chem. 267, 14987–14997 (1992).

    CAS  PubMed  Google Scholar 

  12. Smith, J. D. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc. Natl Acad. Sci. USA 92, 8264–8268 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Ree, J. H. et al. Variability in cholesterol content in serum and aortic tissue in apolipopotein E-deficient mice is comparable in inbred (129/Sv) and outbred (mixed 129/Sv and C57BL/6) mice. Atherosclerosis 118, 165–167 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, S. H., Reddick, R. L., Piedrahita, J. A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhang, S. H., Reddick, R. L., Burkey, B. & Maeda, N. Diet-induced atherosclerosis in mice heterozygous and homozygous for apolipoprotein E gene disruption. J. Clin. Invest. 94, 937–945 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Plump, A. S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Holness, C. L., da Silva, R. P., Fawcett, J., Gordon, S. & Simmons, D. Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J. Biol. Chern. 268, 9661–9666 (1993).

    CAS  Google Scholar 

  18. Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Ramprasad, M. P. et al. The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc. Natl Acad. Sci. USA 92, 9580–9584 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Endemann, G. et al. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268, 11811–11816 (1993).

    CAS  PubMed  Google Scholar 

  21. Acton, S. et al. Identification of scavenger receptor SR-B1 as a high density lipoporotein receptor. Science 271, 518–520 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Azuma, S. & Toyoda, Y. Production of a germ-line chimeric mouse derived from newly established embryonic stem cells. Jpn. J. Anitm. Reprod. 37, 37–43 (1991).

    Article  Google Scholar 

  23. Kurihara, Y. et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 368, 703–710 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Suzuki, H., Togashi, M., Moriguchi, Y. & Adachi, J. Relationship between age-related decline in fertility and in vitro fertilization rate in IVCS mice. J. Reprod. Dev. 40, 107–116 (1994).

    Article  Google Scholar 

  25. Cynshi, O. et al. Characterization of aggregated low density lipoproteins induced by copper-catalyzed oxidation. J. Atheroscler. Thromb. 1, 87–97 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Takata, K. et al. Endocytic uptake of nonenzymatically glycosylated proteins is mediated by a scavenger receptor for aldehyde-modified proteins. J. Biol. Chem. 263, 14819–14825 (1988).

    CAS  PubMed  Google Scholar 

  27. Irie, H. et al. Spread of herpes simplex virus type-1 (Miyama +GC strain) to the central nervous system after intraperitoneal inoculation: the role of the myenteric plexus of the gut. Arch. Virol. 105, 247–257 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. van Berkel, T. J. C., Kruijt, J. K. & Kempen, H.-J. M. Specific targeting of high density lipoproteins to liver hepatocytes by incorporation of a tris-galactoside-terminated cholesterol derivative. J. Biol. Chem. 260, 12203–12207 (1985).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, H., Kurihara, Y., Takeya, M. et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 386, 292–296 (1997). https://doi.org/10.1038/386292a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/386292a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing