Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction between ATM protein and c-Abl in response to DNA damage

Abstract

The gene mutated in the autosomal recessive disorder ataxia telangiectasia (AT), designated ATM (for 'AT mutated'), is a member of a family of phosphatidylinositol-3-kinase-like enzymes that are involved in cell-cycle control, meiotic recombination, telomere length monitoring and DNA-damage response1–4. Previous results have demonstrated that AT cells are hypersensitive to ionizing radiation5–7 and are defective at the Gl/S checkpoint after radiation damage8–10. Because cells lacking the protein tyrosine kinase c-Abl are also defective in radiation-induced Gl arrest11, we investigated the possibility that ATM might interact with c-Abl in response to radiation damage. Here we show that ATM binds c-Abl constitutively in control cells but not in AT cells. Our results demonstrate that the SH3 domain of c-Abl interacts with a DPAPNPPHFP motif (residues 1,373–1,382) of ATM. The results also reveal that radiation-induction of c-Abl tyrosine kinase activity is diminished in AT cells. These findings indicate that ATM is involved in the activation of c-Abl by DNA damage and this interaction may in part mediate radiation-induced Gl arrest.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Savitsky, K. et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749–1753 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zakian, V. A. ATM-related genes: what do they tell us about functions of the human gene? Cell 82, 685–687 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Lavin, M. F. et al. Relationship of the ataxia-telangiectasia protein ATM to phosphoinositide 3-kinase. Trends Biochem. Sci. 20, 382–383 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Jackson, S. P. Cancer predisposition. Ataxia-telangiectasia at the crossroads. Current Biol. 5, 1210–1212 (1995).

    Article  CAS  Google Scholar 

  5. Taylor, A. M. et al. Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity. Nature 274, 484–486 (1975).

    Google Scholar 

  6. Chen, P. C., Lavin, M. F., Kidson, C. & Moss, D. Identification of ataxia telangiectasia heterozygotes, a cancer prone population. Nature 258, 427–429 (1975).

    Article  Google Scholar 

  7. Paterson, M. C., Anderson, A. K., Smith, B. P. & Smith, P. J. Enhanced radiosensitivity of cultured fibroblasts from ataxia telangiectasia heterozygotes manifested by defective colony-forming ability and reduced DNA repair replication after hypoxic gamma-irradiation. Cancer Res. 39, 3725–3734 (1979).

    CAS  PubMed  Google Scholar 

  8. Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587–597 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Khanna, K. K. & Lavin, M. F. Ionizing radiation and UV induction of p53 protein by different pathways in ataxia-telangiectasia cells. Oncogene 8, 3307–3312 (1993).

    CAS  PubMed  Google Scholar 

  10. Khanna, K. K. et al. Nature of G1/S cell cycle checkpoint defect in ataxia-telangiectasia. Oncogene 11, 609–618 (1995).

    CAS  PubMed  Google Scholar 

  11. Yuan, Z.-M. et al. Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature 382, 272–274 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Telatar, M. et al. Ataxia-telangiectasia: mutations in ATM cDNA detected by protein-truncation screening. Am. J. Hum. Genet. 59, 40–44 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Uziel, T. et al. Genomic organization of the ATM gene. Genomics 33, 317–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Pawson, T. Non-catalytic domains of cytoplasmic protein-tyrosine kinases: regulatory elements in signal transduction. Oncogene 3, 491–495 (1988).

    CAS  PubMed  Google Scholar 

  15. Pecker, L. et al. Identification and chromosomal localization of Atm, the mouse homolog of the ataxia-telangiectasia gene. Genomics 35, 39–45 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Kharbanda, S. et al. The stress response to ionizing radiation involves c-Abl-dependent phosphorylation of SHPTP1. Proc. Natl Acad. Sci. USA 93, 6898–6901 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kharbanda, S. et al. Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376, 785–788 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ren, R., Ye, Z.-S. & Baltimore, D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 8, 783–795 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Shafman, T. et al. Defective induction of stress-activated protein kinase activity in ataxia-telangiectasia cells exposed to ionizing radiation. Cancer Res. 55, 3242–3245 (1995).

    CAS  PubMed  Google Scholar 

  20. Zhang, N. et al. Correction of theataxia-telangiectasa cellular phenotype with full-length ATM cDNA. Proc. Natl Acad. Sci. USA (in the press).

  21. Rudolph, N. S. & Latt, S. A. Flow cytometric analysis of X-ray sensitivity in ataxia telangiectasia. Mutat. Res. 211, 31–41 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Beamish, H. & Lavin, M. F. Radiosensitivity in ataxia-telangiectasia: anomalies in radiation-induced cell cycle delay. Int. J. Radiat. Biol 65, 175–184 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Frangioni, J. V. & Neel, B. G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210, 179–187 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Gilad, S. et al. Ataxia-telangiectasia: founder effect among North African Jews. Hum. Mol Genet. 5, 2033–2037 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Watters, D. et al. Cellular localisation of the ataxia-telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene 14, 1911–1921 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Houldsworth, J. & Lavin, M. F. Effect of ionizing radiation on DNA synthesis in ataxia telangiectasia cells. Nucleic Acids Res. 8, 3709–3720 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shafman, T., Khanna, K., Kedar, P. et al. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387, 520–523 (1997). https://doi.org/10.1038/387520a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387520a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing