Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global vegetation change through the Miocene/Pliocene boundary

Abstract

Between 8 and 6 million years ago, there was a global increase in the biomass of plants using C4 photosynthesis as indicated by changes in the carbon isotope ratios of fossil tooth enamel in Asia, Africa, North America and South America. This abrupt and widespread increase in C4 biomass may be related to a decrease in atmospheric CO2 concentrations below a threshold that favoured C3-photosynthesizing plants. The change occurred earlier at lower latitudes, as the threshold for C3 photosynthesis is higher at warmer temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histograms of δ13C for modern grasses (compiled from 58, and unpublished University of Utah data), modern tooth enamel, and fossil tooth enamel <8 Myr.
Figure 2: Changes in δ13C of equid and some other hypsodont mammals in the Neogene.
Figure 3: δ13C of modern and fossil Equus versus latitude (all samples below 2,000 m elevation); we include data from Thackarey and Lee-Thorp45 and data from Fig. 2.
Figure 4: Results of a model for predicting C3/C4 dominance of grasses related to temperature and partial pressure of CO2 according to which photosynthetic pathway has the greater quantum yield; here ‘temperature’ is the daytime growing-season temperature.

Similar content being viewed by others

References

  1. Bender, M. M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239–1245 (1971).

    Article  CAS  Google Scholar 

  2. Winter, K., Troughton, J. H. & Card, K. A. δ13C values of grass species collected in the northern Sahara Desert. Oecologia 25, 115–123 (1976).

    Article  ADS  Google Scholar 

  3. Brown, W. V. The Kranz syndrome and its subtypes in grass systematics. Mem. Torrey Bot. Club 23, 1–97 (1977).

    CAS  Google Scholar 

  4. Vogel, J. C., Fuls, A. & Ellis, R. P. The geographical distribution of Kranz grasses in South Africa. S. Afr. J. Sci. 74, 209–215 (1978).

    Google Scholar 

  5. Farquhar, G. D., Ehleringer, J. R. & Hubrick, K. T. Carbon isotopic discrimination and photosynthesis. Annu. Rev. Plant Physiol. Mol. Biol. 40, 503–537 (1989).

    Article  CAS  Google Scholar 

  6. Quade, J. et al. A16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chem. Geol. 94, 183–192 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Lee-Thorp, J. & van der Merwwe, N. Carbon isotope analysis of fossil bone apatite. S. Afr. J. Sci. 83, 712–715 (1987).

    Google Scholar 

  8. Wang, Y., Cerling, T. E. & MacFadden, B. J. Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 269–279 (1994).

    Article  Google Scholar 

  9. Cerling, T. E., Wang, Y. & Quade, J. Expansion of C4ecosystems as an indicator of global ecological change in the late Miocene. Nature 361, 344–345 (1993).

    Article  ADS  Google Scholar 

  10. Cerling, T. E., Quade, J., Wang, Y. & Bowman, J. R. Carbon isotopes in soils and paleosols as ecological and paleoecologic indicators. Nature 341, 138–139 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Morgan, M. E., Kingston, J. D. & Marino, B. D. Carbon isotope evidence for the emergence of C4plants in the Neogene from Pakistan and Kenya. Nature 367, 162–165 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Kingston, J. D., Marino, B. & Hill, A. Isotopic evidence for Neogene hominid paleoenvironments in the Kenya Rift Valley. Science 264, 955–959 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Hill, A. in Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 178–193 (Yale Univ. Press, New Haven, 1995).

    Google Scholar 

  14. Ehleringer, J. R., Hall, A. E. & Farquhar, G. D. (eds Stable Isotopes and Plant Carbon/Water Relations (Academic, San Diego, 1993).

    Google Scholar 

  15. van der Merwe, N. J. & Medina, E. Photosynthesis and 13C/12C ratios in Amazon rain forests. Geochim. Cosmochim. Acta 53, 1091–1094 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Hattersley, P. W. δ13C values of C4types of grasses. Aust. J. Plant Physiol. 9, 139–154 (1982).

    CAS  Google Scholar 

  17. DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Friedli, H., Lotscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Ice core record of the 13C/12C ratio of atmospheric CO2in the past two centuries. Nature 314, 237–238 (1986).

    Article  ADS  Google Scholar 

  19. Marino, B. D. & McElroy, M. B. Isotopic composition of atmospheric CO2inferred from carbon in C4plant cellulose. Nature 349, 127–131 (1991).

    Article  ADS  CAS  Google Scholar 

  20. Cerling, T. E., Bowman, J. R. & O'Neil, J. R. An isotopic study of a fluvial-lacustrine sequence: the Plio-Pleistocene Koobi Fora sequence, East Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 63, 335–356 (1988).

    Article  CAS  Google Scholar 

  21. Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).

    Article  ADS  Google Scholar 

  22. Cande, S. C. & Kent, D. V. Anew geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 97, 13917–13951 (1992).

    Article  ADS  Google Scholar 

  23. Berggren, W. A., Kent, D. V., Flynn, J. J. & van Couverinng, J. A. Cenozoic geochronology. Geol. Soc. Am. Bull. 96, 1407–1418 (1985).

    Article  ADS  Google Scholar 

  24. Latorre, C., Quade, J. & McIntosh, W. C. The expansion of C4 grasses and global change in the late Miocene: Stable isotope evidence from the Americas. Earth Planet Sci. Lett. 146, 83–96 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Teeri, J. A. & Stowe, L. G. Climatic patterns and the distribution of C4grasses in North America. Oecologia 23, 1–12 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Quade, J., Solounias, N. & Cerling, T. E. Stable isotopic evidence from paleosol carbonates and fossil teeth in Greece for forest or woodlands over the past 11 Mya. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108, 41–53 (1994).

    Article  Google Scholar 

  27. Quade, J., Cerling, T. E., Andrews, P. & Alpagut, B. Paleodietary reconstruction of Miocene faunas from Pasalar, Turkey using stable carbon and oxygen isotopes of fossil tooth enamel. J. Hum. Evol. 28, 373–384 (1995).

    Article  Google Scholar 

  28. Hill, A. Causes of perceived faunal change in the later Neogene of East Africa. J. Hum. Evol. 16, 583–596 (1987).

    Article  Google Scholar 

  29. Barry, J. C., Johnson, N. M., Raza, S. M. & Jacobs, L. L. Neogene mammalian faunal change in southern Asia: correlations with climatic, tectonic, and eustatic events. Geology 13, 637–640 (1985).

    Article  ADS  Google Scholar 

  30. Barry, J. C. in Paleoclimate and Evolution, with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 115–134 (Yale Univ. Press, New Haven, 1995).

    Google Scholar 

  31. Barry, J. C. & Flynn, L. J. in European Neogene Mammal Chronology (eds Lindsay, E. H. et al.) 557–571 (Plenum, New York, 1988).

    Google Scholar 

  32. Webb, S. D., Hulbert, R. C. & Lambert, W. D. in Paleoclimate and Evolution, with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 91–108 (Yale Univ. Press, New Haven, 1995).

    Google Scholar 

  33. MacFadden, B. J. Fossil Horses: Systematic, Paleobiology and Evolution of the Family Equidae (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

  34. Andrews, P. & Van Couverinng, J. A. H. in Approaches to Primate Paleobiology (ed. Szalay, F.) 62–103 (Karger, Basel, 1975).

    Google Scholar 

  35. Van Couvering, J. A. H. & Van Couverinng, J. A. in Human Origins (eds Isaac, G. L. & McCown, E.) 155–208 (Benjamin, Menlo Park, 1976).

    Google Scholar 

  36. Leakey, M. G. et al. 1996, Lothagam: A record of faunal change in the Late Miocene of East Africa. J. Vert. Paleontol. 16, 556–570 (1996).

    Article  Google Scholar 

  37. Eisenmann, V. & Sondaar, P. Y. Hipparions and the Mio-Pliocene boundary. Boll. Soc. Paleontol. Ital. 28, 217–226 (1989).

    Google Scholar 

  38. Ehleringer, J. R., Sage, R. F., Flanagan, L. B. & Pearcy, R. W. Climate change and the evolution of C4 photosynthesis. Trends Ecol. Evol. 6, 95–99 (1991).

    Article  CAS  Google Scholar 

  39. Farquhar, G. D. & von Caemmereer, S. Modeling of photosynthetic response to environmental conditions. Ency Plant Physiol. 12D, 549–587 (1982).

    Google Scholar 

  40. Raymo, M. E. & Ruddiman, W. F. Tectonic forcing of late Cenozoic climate. Nature 359, 117–122 (1992).

    Article  ADS  CAS  Google Scholar 

  41. Stern, L. A., Johnson, G. D. & Chamberlain, C. P. Carbon isotope signature of environmental change found in fossil ratite eggshells from a South Asian Neogene sequence. Geology 22, 419–422 (1994).

    Article  ADS  Google Scholar 

  42. MacFadden, B. J. & Cerling, T. E. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. J. Vert. Paleontol. 16, 103–115 (1996).

    Article  Google Scholar 

  43. MacFadden, B. J., Cerling, T. E. & Prado, J. Cenozoic terrestrial ecosystem evolution in Argentina: evidence from carbon isotopes of fossil mammal teeth. Palaios 11, 319–327 (1996).

    Article  ADS  Google Scholar 

  44. Flynn, J. J. & Swisher, C. C. in Geochronology, Time Scales, and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M.-A. & Hardenbol, J.) 317–333 (Soc. Sedimentary Geol., Tulsa, 1995).

    Book  Google Scholar 

  45. Thackeray, J. F. & Lee-Thorp, J. A. Isotopic analysis of equid teeth from Wonderwerk Cave, northern Cape Province, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 99, 141–150 (1992).

    Article  Google Scholar 

  46. Jordan, D. B. & Ogren, W. L. The CO2/O2specificity of rubulose 1,5-biphosphate carboxylase/oxygenase. Planta 161, 308–313 (1984).

    Article  CAS  Google Scholar 

  47. Monson, R. K., Littlejohn, R. O. & Williams, G. J. The quantum yield for CO2uptake in C3and C4grasses. Photosynth. Res. 3, 153–159 (1982).

    Article  CAS  Google Scholar 

  48. Ehleringer, J. R. & Pearcy, R. W. Variation in quantum yields for CO2uptake among C3and C4plants. Plant Physiol. 73, 555–559 (1983).

    Article  CAS  Google Scholar 

  49. Brooks, A. & Farquhar, G. D. Effect of temperature on the CO2/O2specificity of rubulose-1,5-biphosphate carboxylase/oxygenase and the rate of respiration in light. Plants 165, 397–406 (1985).

    Article  CAS  Google Scholar 

  50. Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J.-J. Isotopic biogeochemistry of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–318 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank W. Akersten, R. Anderson, T. M. Bown, J. D. Bryant, B. Engesser, J. Fleagle, J. A. Hart, J. Hearst, H. Hutchison, L. L. Jacobs, E. H. Lindsay, E. L. Lundelius, H. G. McDonald, N. Mudida, M. Voorhies, A. Walker, D. Whistler, D. Winkler and M. O. Woodburne for assistance in obtaining samples. We also thank J. Kappelman and G. Farquhar for comments. This work was supported by the US NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thure E. Cerling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerling, T., Harris, J., MacFadden, B. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997). https://doi.org/10.1038/38229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38229

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing