Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation and manipulation of a metallic wire of single gold atoms

Abstract

The continuing miniaturization of microelectronics raises the prospect of nanometre-scale devices with mechanical and electrical properties that are qualitatively different from those at larger dimensions. The investigation of these properties, and particularly the increasing influence of quantum effects on electron transport, has therefore attracted much interest. Quantum properties of the conductance can be observed when ‘breaking’ a metallic contact: as two metal electrodes in contact with each other are slowly retracted, the contact area undergoes structural rearrangements until it consists in its final stages of only a few bridging atoms1,2,3. Just before the abrupt transition to tunnelling occurs, the electrical conductance through a monovalent metal contact is always close to a value of 2e2/h (≈12.9 Ω−1), where e is the charge on an electron and h is Planck's constant4,5,6. This value corresponds to one quantum unit of conductance, thus indicating that the ‘neck’ of the contact consists of a single atom7. In contrast to previous observations of only single-atom necks, here we describe the breaking of atomic-scale gold contacts, which leads to the formation of gold chains one atom thick and at least four atoms long. Once we start to pull out a chain, the conductance never exceeds 2e2/h, confirming that it acts as a one-dimensional quantized nanowire. Given their high stability and the ability to support ballistic electron transport, these structures seem well suited for the investigation of atomic-scale electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conductance as a function of the displacement of the two gold electrodes with respect to each other in an MCB experiment at 42 K.
Figure 2: The distribution of lengths for the last plateau, obtained in 100,000 experiments similar to those described in Fig. 1, shows a number of equidistant maxima.
Figure 3: Swinging an atomic contact sideways by lateral displacement of one of its ends in an STM experiment.

Similar content being viewed by others

References

  1. van Ruitenbeek, J. M. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 549–579 (NATO ASI Ser. E., Vol. 345, Kluwer Academic, Dordrecht, (1997)).

    Book  Google Scholar 

  2. Sutton, A. P. & Pethica, J. B. Inelastic flow processes in nanometre volumes of solids. J. Phys.: Condens. Matter 2, 5317–5326 (1990).

    ADS  Google Scholar 

  3. Landman, U., Luedtke, W. D., Burnham, N. A. & Colton, R. J. Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture. Science 248, 454–461 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Agraït, N., Rodrigo, J. G. & Vieira, S. Conductance steps and quantization in atomic-size contacts. Phys. Rev. B 47, 12345–12348 (1993).

    Article  ADS  Google Scholar 

  5. Pascual, J. I. et al. Quantum contact in gold nanostructures by scanning tunneling microscopy. Phys. Rev. Lett. 71, 1852–1855 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Krans, J. M. et al. One-atom point contacts. Phys. Rev. B 48, 14721–14724 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Scheer, E. et al. The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154–157 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Brandbyge, M. et al. Quantized conductance in atom-sized wires between two metals. Phys. Rev. B 52, 8499–8514 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Rubio, G., Agraït, N. & Vieira, S. Atomic-sized metallic contacts: mechanical properties and electronic transport. Phys. Rev. Lett. 76, 2302–2305 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Muller, C. J., van Ruitenbeek, J. M. & de Jongh, L. J. Experimental observation of the transition from weak link to tunnel junction. Physica C 191, 485–504 (1992).

    Article  ADS  Google Scholar 

  11. van Ruitenbeek, J. M. et al. Adjustable nanofrabricated atom size contacts. Rev. Sci. Instrum. 67, 108–111 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Todorov, T. N. & Sutton, A. P. Jumps in electronic conductance due to mechanical instabilities. Phys. Rev. Lett. 70, 2138–2141 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Yazdani, A., Eigler, D. M. & Lang, N. D. Off-resonance conduction through atomic wires. Science 272, 1921–1924 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Lang, N. D. Anomalous dependence of resistance on length in atomic wires. Phys. Rev. Lett. 79, 1357–1360 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Brandbyge, M., Sørensen, M. R. & Jacobsen, K. W. Conductance eigenchannels in nanocontacts. Phys. Rev. B 56, 14956–14959 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Sørensen, M. R., Brandbyge, M. & Jacobsen, K. W. Mechanical deformation of atomic-scale metallic contacts: structure and mechanism. Phys. Rev. B 57, 3283–3295 (1998).

    Article  ADS  Google Scholar 

  17. Finbow, G. M., Lynden-Bell, R. M. & McDonald, I. R. Atomic simulation of the stretching of nanoscale metal wires. Mol. Phys. 92 (N4), 705–714 (1997).

    Article  ADS  Google Scholar 

  18. Barnett, R. N. & Landman, U. Cluster-derived structures and conductance fluctuations in nanowires. Nature 387, 788–791 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Fisher, M. P. A. & Glazman, L. I. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 331–373 (NATO ASI Ser. E, Vol 345, Kluwer Academic, Dordrecht, (1997)).

    Book  Google Scholar 

  20. Krans, J. M. Size Effects in Atomic-Scale Point Contacts. Thesis, Leiden Univ.((1996).

    Google Scholar 

Download references

Acknowledgements

We thank B. Ludoph for many discussions, S. Vieira and L. J. de Jongh for discussions and continuous support, and A. P. Sutton, T. N. Todorov, M. R. Sørensen, M. Brandbyge and K. W. Jacobsen for communicating their results before publication. A.I.Y., H.E.v.d.B. and J.M.v.R. were supported by FOM; N.A. and G.R.B. were supported by the CICYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. van Ruitenbeek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanson, A., Bollinger, G., van den Brom, H. et al. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998). https://doi.org/10.1038/27405

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27405

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing