Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The effect of magnetic fields on γ-ray bursts inferred from multi-wavelength observations of the burst of 23 January 1999

Abstract

Gamma-ray bursts (GRBs) are thought to arise when an extremely relativistic outflow of particles from a massive explosion (the nature of which is still unclear) interacts with material surrounding the site of the explosion. Observations of the evolving changes in emission at many wavelengths allow us to investigate the origin of the photons, and so potentially determine the nature of the explosion. Here we report the results of γ-ray, optical, infrared, submillimetre, millimetre and radio observations of the burst GRB990123 and its afterglow. Our interpretation of the data indicates that the initial and afterglow emissions are associated with three distinct regions in the fireball. The peak flux of the afterglow, one day after the burst, has a lower frequency than observed for other bursts; this explains the short-lived radio emission. We suggest that the differences between bursts reflect variations in the magnetic-field strength in the afterglow-emitting regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The BATSE light curves of GRB990123 in two energy ranges, 25–230 keV (top) and 320–1,800 keV (bottom).
Figure 2: Optical flux and γ-ray spectra for the time intervals of the three ROTSE observations.
Figure 3: R-band light curve of the afterglow of GRB990123.
Figure 4: The spectral flux distribution of the afterglow at 1999 January 24.65  UT.

Similar content being viewed by others

References

  1. Piran, T. Gamma-ray bursts and the fireball model. Phys. Rep. (in the press); preprint astro-ph/9810256 at 〈http://xxx.lanl.gov〉 (1998).

  2. Galama, T. J. et al. The radio-to-X-ray spectrum of GRB970508 on 1997 May 21.0 UT. Astrophys. J. 500, L97– L101 (1998).

    Article  ADS  Google Scholar 

  3. Mészáros, P. & Rees, M. J. Optical and long-wavelength afterglow from gamma-ray bursts. Astrophys. J. 476, 232–237 (1997).

    Article  ADS  Google Scholar 

  4. Sari, R. & Piran, T. Predictions for the very early afterglow and the optical flash. Preprint astro-ph/9901338 at 〈http://xxx.lanl.gov 〉 (1998).

  5. Katz, J. I. Low-frequency spectra of gamma-ray bursts. Astrophys. J. 432, L107–L109 (1994).

    Article  ADS  Google Scholar 

  6. Costa, E. et al. Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature 387, 783– 785 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Feroci, M. et al. BeppoSAX follow-up search for the X-ray afterglow of GRB970508. Astron. Astrophys. 332, L29– L32 (1998).

    ADS  Google Scholar 

  8. in't Zand, J. J. M. et al. Gamma-ray burst 980329 and its X-ray afterglow. Astrophys. J. 505, L119–L122 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Nicastro, L. et al. BeppoSAX observations of GRB970402. Astron. Astrophys. 338, L17–L20 ( 1998).

    ADS  Google Scholar 

  10. Piro, L. et al. Evidence for a late-time outburst of the X-ray afterglow of GRB970508 from BeppoSAX. Astron. Astrophys. 331, L41– L44 (1998).

    ADS  Google Scholar 

  11. Connors, A. & Hueter, G. J. The X-ray characteristics of a classical gamma-ray burst and its afterglow. Astrophys. J. 501, 307–324 (1998).

    Article  ADS  Google Scholar 

  12. Akerlof, C. et al. Observation of contemporaneous optical radiation from a γ-ray burst. Nature 398, 400– 402 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Ford, L. A. et al. BATSE observations of gamma-ray burst spectra. 2: Peak energy evolution in bright, long bursts. Astrophys. J. 439 , 307–321 (1995).

    Article  ADS  Google Scholar 

  14. Kouveliotou, C. et al . Identification of two classes of gamma-ray bursts. Astrophys. J. 413, L101–L104 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Kelson, D. D. et al. IAU Circ. No. 7096 (1999).

    Google Scholar 

  16. Fruchter, A. et al. GCN Circ. No. 255 (1999).

    Google Scholar 

  17. Bloom, J. S. et al. GCN Circ. No. 240 (1999).

    Google Scholar 

  18. Bloom, J. S. et al. GCN Circ. No. 206 (1999).

    Google Scholar 

  19. Kulkarni, S. R. & Frail, D. A. GCN Circ. No. 239 ( 1999).

    Google Scholar 

  20. Fruchter, A. Was GRB980329 at z 5? Astrophys. J. (in the press); preprint astro-ph/9810224 at 〈http://xxx.lanl.gov〉 (1998).

  21. Waxman, E. Angular size and emission timescales of relativistic fireballs. Astrophys. J. 491, L19–L22 (1997).

    Article  ADS  Google Scholar 

  22. Wijers, R. A. M. J., Rees, M. J. & Mészáros, P. Shocked by GRB970228: the afterglow of a cosmological fireball. Mon. Not. R. Astron. Soc. 288 , L51–L56 (1997).

    Article  ADS  Google Scholar 

  23. Ramaprakash, A. N. et al. The energetic afterglow of the γ-ray burst of 14 December 1997. Nature 393, 43– 46 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Sari, R., Piran, T. & Narayan, R. Spectra and light curves of gamma-ray burst afterglows. Astrophys. J. 497, L17– L20 (1998).

    Article  ADS  Google Scholar 

  25. Wijers, R. A. M. J. & Galama, T. J. Physical parameters of GRB970508 and GRB971214 from their afterglow synchrotron emission. Astrophys. J. (in the press); preprint astro-ph/9805341 at 〈http://xxx.lanl.gov 〉 (1998).

  26. De Bruyn, A. G. in The Westerbork Observatory, Continuing Adventure in Radio Astronomy (eds Raimond, E. &&&&& Genee, R.) 109– 125 (ASSL Vol. 207, Kluwer Academic, (1996).

    Book  Google Scholar 

  27. Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K. & Witzel, A. The absolute spectrum of Cas A — An accurate flux density scale and a set of secondary calibrators. Astron. Astrophys. 61, 99–106 (1977).

    ADS  Google Scholar 

  28. Guilloteau, S. et al . The IRAM interferometer on Plateau de Bure. Astron. Astrophys. 262, 624–633 (1992).

    ADS  Google Scholar 

  29. Baars, J. W. M., Hooghoudt, B. G., Mezger, P. G. & De Jonge, M. J. The IRAM 30-m millimeter radio telescope on Pico Veleta, Spain. Astron. Astrophys. 175, 319–326 (1987).

    ADS  CAS  Google Scholar 

  30. Reuter, H.-P. & Kramer, C. The mm-to-submm continuum spectra of W 3(OH) and K 3-50A. Astron. Astrophys. 339, 183–186 (1998).

    ADS  Google Scholar 

  31. Greve, A., Neri, R. & Sivers, A. The gain-elevation correction of the IRAM 30-m telescope. Astron. Astrophys. Suppl. 132, 413–416 (1998).

    Article  ADS  Google Scholar 

  32. Holland, W. S. et al . SCUBA: A common-user submillimetre camera operating on the James Clerk Maxwell Telescope. Mon. Not. R. Astron. Soc. (in the press); preprint astro-ph/9809122 at 〈http://xxx.lanl.gov 〉 (1999).

  33. Smith, I. A. et al. SCUBA sub-millimeter observations of gamma-ray bursters I. GRB970508, 971214, 980326, 980329, 980519, 980703. Astron. Astrophys. (in the press); preprint astro-ph/9811026 at 〈http://xxx.lanl.gov 〉 (1999).

  34. Landolt, A. U. UBVRI photometric standard stars in the magnitude range 11.5 < V < 16.0 around the celestial equator. Astron. J. 104, 340–376 (1992).

    Article  ADS  Google Scholar 

  35. Casali, M. M. & Hawarden, T. G. JCMT-UKIRT Newsl. No. 3, 33 (1992).

    Google Scholar 

  36. Band, D. et al. BATSE observations of gamma-ray burst spectra. I–Spectral diversity. Astrophys. J. 413, 281– 292 (1993).

    Article  ADS  CAS  Google Scholar 

  37. Gal, R. R., Odewahn, S. C., Bloom, S. J., Kulkarni, S. R. & Frail, D. A. GCN Circ. No. 207 ( 1999).

    Google Scholar 

  38. Garnavich, P., Jha, S., Stanek, K. & Garcia, M. GCN Circ. No. 215 ( 1999).

    Google Scholar 

  39. Masetti, N. et al. GCN Circ. No. 233 (1999).

    Google Scholar 

  40. Zhu, J., Chen, J. S. & Zhang, H. T. GCN Circ. No. 217 (1999).

    Google Scholar 

  41. Yadigaroglu, I. A., Halpern, J. P., Uglesich, R. & Kemp, J. GCN Circ. No. 242 (1999).

    Google Scholar 

  42. Yadigaroglu, I. A., Halpern, J. P., Uglesich, R. & Kemp, J. GCN Circ. No. 248 (1999).

    Google Scholar 

  43. Sokolov, V., Zharikov, S., Nicastro, L., Feroci, M. & Palazzi, E. GCN Circ. No. 209 ( 1999).

    Google Scholar 

  44. Frail, D. A. & Kulkarni, S. R. GCN Circ. No. 211 (1999).

    Google Scholar 

  45. Heise, J. et al. IAU Circ. No. 7099 (1999).

    Google Scholar 

  46. Bessell, M. S. UBVRI photometry. II — The Cousins VRI system, its temperature and absolute flux calibration, and relevance for two-dimensional photometry. Publ. Astron. Soc. Pacif. 91, 589– 607 (1979).

    Article  ADS  CAS  Google Scholar 

  47. Bessell, M. S. & Brett, J. M. JHKLM photometry — Standard systems, passbands, and intrinsic colors. Publ. Astron. Soc. Pacif. 100, 1134–1151 ( 1988).

    Article  ADS  Google Scholar 

  48. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  49. Granot, J., Piran, T. & Sari, R. Synchrotron self absorption in GRB afterglow. Astrophys. J. (in the press); preprint astro-ph/9808007 at 〈http://xxx.lanl.gov 〉 (1999).

Download references

Acknowledgements

The United Kingdom Infra-Red Telescope is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council (PPARC). Observations at the Wise Observatory are supported by the Basic Science Foundation of the Israeli Academy of Sciences. The JCMT is operated by the Joint Astronomy Centre on behalf of the UK PPARC, the Netherlands Organisation for Pure Research, and the National Research Council of Canada. We thank G. Watt, I.Robson, and J. van der Hulst for authorizing the JCMT observations. We also thank P. Meikle, P. Smith, D. Harmer and the KPNO GRB team for their observations, and G. Jacoby for providing BVRI photometric standards. T.J.G. is supported by NFRA, P.M.V. by the NWO Spinoza grant. C.K., D.L.B., K.H. and M.S.B. are supported by NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Galama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galama, T., Briggs, M., Wijers, R. et al. The effect of magnetic fields on γ-ray bursts inferred from multi-wavelength observations of the burst of 23 January 1999. Nature 398, 394–399 (1999). https://doi.org/10.1038/18828

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/18828

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing