Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Variability of inorganic and organic phosphorus turnover rates in the coastal ocean

Abstract

Phosphorus is an essential nutrient in pelagic marine ecosystems. Phosphorus cycling in the upper ocean is, however, poorly understood, and few studies have directly investigated the biological utilization of this essential element1,2,3,4. Here, we have determined in situ phosphorus-turnover rates in a coastal marine environment by measuring the activities of two cosmogenic radionuclides (32P and 33P, with half lives of 14.3 and 25.3 days, respectively) in dissolved inorganic, dissolved organic and total particulate phosphorus pools over a seasonal cycle. Phosphorus turnover rates within dissolved and particulate pools are rapid and vary over seasonal timescales, suggesting that low phosphorus concentrations can support relatively high primary production. Furthermore, picoplankton, such as bacteria, appear preferentially to utilize certain dissolved organic phosphorus compounds to obtain other associated nutrients, such as carbon and nitrogen. It seems that the significance of the roles of both dissolved inorganic and organic phosphorus in supporting primary production—and, hence, CO2 uptake and particulate organic carbon export—has been hitherto underestimated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 33P/32P ratios in rain and sea water.
Figure 2: Phosphorus ages and particulate organic carbon (POC) fluxes.

Similar content being viewed by others

References

  1. Lal, D. & Lee, T. Cosmogenic 32P and 33P as tracers to study phosphorus recycling in the upper ocean. Nature 333, 752–754 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Orrett, K. & Karl, D. M. Dissolved organic phosphorus production and turnover in surface waters. Limnol. Oceanogr. 32, 383–395 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Cotner, J. B., Ammerman, J. W., Peele, E. R. & Bentzen, E. Phosphorus limited bacterioplankton growth in the Sargasso Sea. Aquat. Microb. Ecol. 13, 141–149 (1997).

    Article  Google Scholar 

  4. Karl, D. M. & Yanagi, K. Partial characterization of the dissolved organic phosphorus pool in the oligotrophic North Pacific Ocean. Limnol. Oceanogr. 42, 1398–1405 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Waser, N. A. D., Bacon, M. P. & Michaels, A. P. Natural activities of 32P and 33P and the 33P/32P ratio in suspended particulate matter and plankton in the Sargasso Sea. Deep-Sea Res. II 43, 421–436 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Benitez-Nelson, C. R. & Buesseler, K. O. Measurement of cosmogenic 32P and 33P activities in rainwater and seawater. Anal. Chem. 70, 64–72 (1998).

    Article  CAS  Google Scholar 

  7. Benitez-Nelson, C. R. & Buesseler, K. O. 32P, 33P, 7Be, and 210Pb: Atmospheric fluxes and utility in tracing stratosphere troposphere exchange. J. Geophys. Res. (in the press).

  8. Lee, T., Barg, E. & Lal, D. Studies of vertical mixing in the Southern California Bight with cosmogenic radionuclides 32P and 7Be. Liminol. Oceanogr. 36, 1044–1053 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Lee, T., Barg, E. & Lal, D. Techniques for extraction of dissolved inorganic and organic phosphorus from large volumes of seawater. Anal. Chim. Acta 260, 113–121 (1992).

    Article  CAS  Google Scholar 

  10. Waser, N. A. D. & Bacon, M. P. Wet deposition fluxes of cosmogenic 32P and 33P and variations in the 33P/32P ratios at Bermuda. Earth Planet. Sci. Lett. 133, 71–80 (1995).

    Article  ADS  CAS  Google Scholar 

  11. O'Reilly, J. E. & Busch, D. A. Phytoplankton primary production on the northwestern Atlantic Shelf. Rapp. P.-v. Reun. Cons. Int. Explor. Mer. 183, 255–268 (1984).

    Google Scholar 

  12. Koroleff, F. in Methods of Seawater Analysis 2nd edn(eds Grasshoff, K., Ehrherd, M. & Kremling, K.) 125–135 (Verlag Chemie, Weinheim, (1983).

    Google Scholar 

  13. Currie, D. J. & Kalff, J. The relative importance of bacterioplankton and phytoplankton in phosphorus uptake in freshwater. Limnol. Oceanogr. 29, 311–321 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Wheeler, P. A. & Kirchman, D. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr. 31, 998–1009 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Cho, B. C. & Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean's interior. Nature 332, 441–443 (1988).

    Article  ADS  CAS  Google Scholar 

  16. Clark, L. L., Ingall, E. D. & Benner, R. Marine phosphorus is selectively remineralized. Nature 393, 426 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Ammerman, J. W. & Azam, F. Bacterial 5′-nucleotidase in aquatic ecosystems: A novel mechanism for phosphorus regeneration. Science 227, 1338–1340 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Ammerman, J. W. in Microbial Enzymes in Aquatic Environments(ed. Chost, R. J.) 165–186 (Springer, New York, (1991).

    Book  Google Scholar 

  19. Bjorkman, K. & Karl, D. M. Bioavailability of inorganic and organic phosphorus compounds to natural assemblages of microorganisms in Hawaiian coastal waters. Mar. Ecol. Prog. Ser. 111, 265–273 (1994).

    Article  ADS  Google Scholar 

  20. Anderson, O. K., Goldman, J. C., Caron, D. A. & Dennett, M. R. Nutrient cycling in a microflagellate food chain: III. Phosphorus dynamics. Mar. Ecol. Prog. Ser. 31, 46–55 (1986).

    ADS  Google Scholar 

  21. Barbeau, K., Moffett, J. W., Caron, D. A., Croot, P. L. & Erdner, D. L. Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature 380, 61–64 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Buesseler, K. O. The decoupling of production and particle export in the surface ocean. Glob. Biogeochem. Cycles 12, 297–310 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Marshall, S. M., Conover, R. J. & Orr, A. P. On the biology of Calanus finmarchicus. XII. The phosphorus cycle: excretion, egg production, and autolysis. The turnover of phosphorus by Calanus finmarchicus. J. Mar. Biol. Assoc. UK 41, 463–488 (1961).

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank G. Crossin, J. Andrews, L. Ball and C. Tarr for help in sample preparation, collection and purification. We also thank the crew of the RV Cape Hatteras. The manuscript was greatly improved with the help of E. Ingall. This work was supported by NSF, EPA STAR Fellowship Program, and WHOI unrestricted funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia R. Benitez-Nelson.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benitez-Nelson, C., Buesseler, K. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature 398, 502–505 (1999). https://doi.org/10.1038/19061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19061

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing