Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clathrin self-assembly is mediated by a tandemly repeated superhelix

Abstract

Clathrin is a triskelion-shaped cytoplasmic protein that polymerizes into a polyhedral lattice on intracellular membranes to form protein-coated membrane vesicles. Lattice formation induces the sorting of membrane proteins during endocytosis and organelle biogenesis by interacting with membrane-associated adaptor molecules1. The clathrin triskelion is a trimer of heavy-chain subunits (1,675 residues), each binding a single light-chain subunit, in the hub domain (residues 1,074–1,675). Light chains negatively modulate polymerization so that intracellular clathrin assembly is adaptor-dependent2. Here we report the atomic structure, to 2.6 Å resolution, of hub residues 1,210–1,516 involved in mediating spontaneous clathrin heavy-chain polymerization and light-chain association3,4. The hub fragment folds into an elongated coil of α-helices, and alignment analyses reveal a 145-residue motif that is repeated seven times along the filamentous leg and appears in other proteins involved in vacuolar protein sorting. The resulting model provides a three-dimensional framework for understanding clathrin heavy-chain self-assembly, light-chain binding and trimerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization of the clathrin polyhedron and triskelion.
Figure 2: The crystal structure of clathrin heavy-chain residues 1,210–1,516.
Figure 3: Optimized superposition of Cα traces from CHCR5, CHCR6 and CHCR7 regions in the clathrin proximal leg, determined with LSQMAN27.
Figure 4: Sequence analysis of clathrin heavy-chain and related sequences.
Figure 5: Surface representations of clathrin heavy chain, residues 1210–1516.

Similar content being viewed by others

References

  1. Schmid, S. L. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997).

    Article  CAS  Google Scholar 

  2. Ybe, J. A.et al. Clathrin self-assembly is regulated by three light chain residues controlling the formation of critical salt bridges. EMBO J. 17, 1297–1303 (1998).

    Article  CAS  Google Scholar 

  3. Näthke, I. S.et al. Folding and trimerization of clathrin subunits at the triskelion hub. Cell 68, 899–910 (1992).

    Article  Google Scholar 

  4. Liu, S. H., Wong, M. L., Craik, C. S. & Brodsky, F. M. Regulation of clathrin assembly and trimerization defined using recombinant triskelion hubs. Cell 83, 257–267 (1995).

    Article  CAS  Google Scholar 

  5. Smith, C. J., Grigorieff, N. & Pearse, B. M. F. Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO J. 17, 4943–4953 (1998).

    Article  CAS  Google Scholar 

  6. Chothia, C., Levitte, M. & Richardson, D. Helix to helix packing in proteins. J. Mol. Biol. 145, 215–250 (1981).

    Article  CAS  Google Scholar 

  7. Raag, R., Appelt, K., Xuong, N. H. & Banaszak, L. Structure of the lamprey yolk lipid–protein complex lipovitellin–phosvitin at 2.8 Å resolution. J. Mol. Biol. 200, 553–569 (1988).

    Article  CAS  Google Scholar 

  8. Thunnissen, A.-M.et al. Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography. Nature 367, 750–753 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Strickland, C. L.et al. Crystal structure of farnesyl protein transferase complexed with a CaaX peptide and farnesyl diphosphate analogue. Biochemistry 37, 16601–16611 (1998).

    Article  CAS  Google Scholar 

  10. Peters, J. W., Stowell, M. H. & Rees, D. C. Aleucine-rich repeat variant with a novel repetitive protein structural motif. Nature Struct. Biol. 3, 991–994 (1996).

    Article  CAS  Google Scholar 

  11. Huber, A. H., Nelson, W. J. & Weis, W. I. Three-dimensional structure of the armadillo repeat region of β-catenin. Cell 90, 871–882 (1997).

    Article  CAS  Google Scholar 

  12. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin alpha. Cell 94, 193–204 (1998).

    Article  CAS  Google Scholar 

  13. Groves, M. R.et al. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell 96, 99–110 (1999).

    Article  CAS  Google Scholar 

  14. Murzin, A. G., Brenner, S. E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  15. Das, A. K., Cohen, P. T. W. & Barford, D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J. 17, 1192–1199 (1998).

    Article  CAS  Google Scholar 

  16. ter Haar, E., Musacchio, A., Harrison, S. C. & Kirchhausen, T. Atomic structure of clathrin: a β propeller terminal domain joins an α zigzag linker. Cell 95, 563–573 (1998).

    Article  CAS  Google Scholar 

  17. Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. Aflexible motif search technique based on generalized profiles. Comput. Chem. 20, 30–23 (1996).

    Article  Google Scholar 

  18. Conibear, E. & Stevens, T. H. Multiple sorting pathways between the late Golgi and the vacuole in yeast. Biochim. Biophys. Acta 1404, 211–230 (1996).

    Article  Google Scholar 

  19. Nakamura, N., Hirata, A., Ohsumi, Y. & Wada, Y. Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes and involved in the vacuolar assembly in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 272, 11344–11349 (1997).

    Article  CAS  Google Scholar 

  20. Winkler, F. K. & Stanley, K. K. Clathrin heavy chain, light chain interactions. EMBO J. 2, 1393–1400 (1983).

    Article  CAS  Google Scholar 

  21. Kirchhausen, T.et al. Clathrin light chains LCa and LCb are similar, polymorphic, and share repeated heptad motifs. Science 236, 320–326 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Wilde, A.et al. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Cell 96, 677–687 (1999).

    Article  CAS  Google Scholar 

  23. Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. Atomic structures of the human immunophilin FKBP-12 complexes with FK506 and rapamycin. J. Mol. Biol. 229, 105–124 (1993).

    Article  CAS  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Terwilliger, T. C. Multiwavelength anomalous diffraction phasing of macromolecular structures: analysis of MAD data as single isomorphous replacement with anomalous scattering data using the MADMRG program. Methods Enzymol. 276, 530–537 (1997).

    Article  CAS  Google Scholar 

  26. Brünger, A. T.et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst. D 54, 905–921 (1998).

    Article  Google Scholar 

  27. Kleywegt, G. J. & Jones, T. A. Asuper position. ESF/CCP4 Newsletter 31, 9–14 (1994).

    Google Scholar 

  28. Esnouf, M. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  30. Merritt, E. A. & Murphy, M. E. P. RASTER3D version 2.0—a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Masiarz for mass spectrometry analysis; L.-W. Hung for assistance with data collection at beamline 5.0.2 of the Macromolecular Cyrstallography Facility at the Advanced Light Source (ALS is funded by the U.S. Department of Energy Office of Basic Energy Sciences); H. Bellamy and W. Weis for discussions on crystallographic data collection and analysis; T. Terwilliger and C. Weekes for correspondence on SOLVE and SnB2, respectively; M. Butte, for software assistance and comments on manuscript. This work was supported by the NIH (F.M.B., R.J.F.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances M. Brodsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ybe, J., Brodsky, F., Hofmann, K. et al. Clathrin self-assembly is mediated by a tandemly repeated superhelix. Nature 399, 371–375 (1999). https://doi.org/10.1038/20708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/20708

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing