Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synthesis of cubic silicon nitride

Abstract

Silicon nitride (Si3N4) is used in a variety of important technological applications. The high fracture toughness, hardness and wear resistance of Si3N4-based ceramics are exploited in cutting tools and anti-friction bearings1; in electronic applications, Si3N4 is used as an insulating, masking and passivating material2. Two polymorphs of silicon nitride are known, both of hexagonal structure: α- and β-Si3N4. Here we report the synthesis of a third polymorph of silicon nitride, which has a cubic spinel structure. This new phase, c-Si3N4, is formed at pressures above 15 GPa and temperatures exceeding 2,000 K, yet persists metastably in air at ambient pressure to at least 700 K. First-principles calculations of the properties of this phase suggest that the hardness of c-Si3N4 should be comparable to that of the hardest known oxide (stishovite3, a high-pressure phase of SiO2), and significantly greater than the hardness of the two hexagonal polymorphs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-pressure Raman spectra of silicon nitride phases synthesized by heating elemental silicon and molecular nitrogen in a diamond cell.
Figure 2: Selected-area electron diffraction pattern of zone [001] of the new cubic silicon nitride.
Figure 3: Calculated energy-versus-volume data for three Si3N4 structures.

Similar content being viewed by others

References

  1. Komeya, K. & Matsui, M. in Materials Science and Technology (eds Cahn, R. W., Haasen, P. & Kramer, E. J.) 518–565 (Wiley-VCH, Weinheim, 1994).

    Google Scholar 

  2. Gmelin Handbook of Inorganic and Organometallic ChemistrySi Suppl. B 5c, Silicon Nitride in Electronics (Springer, Berlin, 1991).

  3. Leger, J. M.et al. Discovery of hardest known oxide. Nature 383, 401 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Smyth, J. R. & McCormick, T. C. in Mineral Physics and Crystallography: a Handbook of Physical Constants (ed. Ahrens, T. J.) 1–17 (Am. Geophys. Union, Washington DC, 1995).

    Google Scholar 

  5. McCauley, J. W. & Corbin, N. D. Phase relations and reaction sintering of transparent cubic aluminum oxynitride spinel (ALON). J. Am. Ceram. Soc. 62, 476–479 (1979).

    Article  CAS  Google Scholar 

  6. Grins, J., Käll, P.-O. & Svensson, G. Synthesis, structure and magnetic susceptibility of the oxynitride spinel Mn2(MnTa3)N6−δO2+δ, 0 < δ < 1. J. Solid State Chem. 117, 48–54 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Köllisch, K. & Schnick, W. Ce16S15O6M32-An oxonitridosilicate with silicon octahedrally coordinated by nitrogen. Angew. Chem. Int. Edn 38, 357–359 (1999).

    Article  Google Scholar 

  8. Liu, A. Y. & Cohen, M. L. Prediction of new low compressibility solids. Science 245, 841–842 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Teter, D. M. & Hemley, R. J. Low-compressibility carbon nitrides. Science 271, 53–55 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Powder Diffraction File-2 Database (JCPDS Int. Centre for Diffraction Data, Newtown Square, PA 19073, USA, 1996).

  11. Wada, N., Solin, S. A., Wong, J. & Prochazka, S. Raman and IR absorption spectroscopic studies on α, β and amorphous Si3N4. J. Non-Cryst. Solids 43, 7–15 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Bradley, R. S., Munro, D. C., Whitfield, M. The reactivity and polymorphism of selected nitrides at high temperatures and high pressures. J. Inorg. Nucl. Chem. 28, 1803–1812 (1966).

    Article  CAS  Google Scholar 

  13. Kruger, M. B.et al. Equation of state of α-Si3N4. Phys. Rev. B 55, 3456–3460 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Yoo, C.-S., Akella, J. & Nicol, M. in Proc. 3rd Int. Conf. on Advanced Materials (eds Akaishi, M. et al.) 175–179 (NIRIM, Tsukuba, Japan, 1996).

    Google Scholar 

  15. Boehler, R., von Bargen, N. & Chopelas, A. Melting, thermal expansion and phase transitions of iron at high pressures. J. Geophys. Res. 95, 21731–21736 (1990).

    Article  ADS  Google Scholar 

  16. Boehler, R. & Chopelas, A. Anew approach to laser heating in high pressure mineral physics. Geophys. Res. Lett. 18, 1147–1150 (1991).

    Article  ADS  Google Scholar 

  17. Mernagh, T. P. & Liu, L.-G. Pressure dependence of Raman phonons of some group IVA (C, Si, and Ge) elements. J. Phys. Chem. Solids 52, 507–512 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Bundy, F. P. Phase diagrams of silicon and germanium to 200 kbar, 1000 °C. J. Chem. Phys. 41, 3809–3814 (1964).

    Article  ADS  CAS  Google Scholar 

  19. Olijnyk, H. Raman scattering in metallic Si and Ge up to 50 GPa. Phys. Rev. Lett. 68, 2232–2234 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Kobliska, R. J.et al. Raman scattering from phonons in polymorphs of Si and Ge. Phys. Rev. Lett. 29, 725–728 (1972).

    Article  ADS  CAS  Google Scholar 

  21. Yin, M. T. & Cohen, M. L. Theory of static structural properties, crystal stability, and phase transformations: Application to Si and Ge. Phys. Rev. B 26, 5668–5687 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Ihm, J. Total energy calculations in solid state physics. Rep. Prog. Phys. 51, 105–142 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Murnaghan, F. D. The compressibility of media under extreme pressures. Proc. Natl Acad. Sci. USA 30, 244–247 (1944).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Cartz, L. & Jorgensen, J. D. The high-pressure behaviour of α-quartz, oxynitride, and nitride structures. J. Appl. Phys. 52, 236–244 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Knittle, E. in Mineral Physics and Crystallography: a Handbook of Physical Constants (ed. Ahrens, T. J.) 98–142 (Am. Geophys. Union, Washington DC, 1995).

    Google Scholar 

  26. Bass, J. D. in Mineral Physics and Crystallography: a Handbook of Physical Constants (ed. Ahrens, T. J.) 45–63 (Am. Geophys. Union, Washington DC, 1995).

    Google Scholar 

  27. Bockstedte, M., Kley, A., Neugebauer, J. & Scheffler, M. Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab-initio molecular dynamics. Comput. Phys. Commun. 107, 187–222 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank O. Tschauner and I.-W. Chen for discussions, and Bayer AG for providing the β-Si3N4 powder. This work was supported by the Deutsche Forschungsgemeinschaft, Bonn, Germany, and the Fonds der Chemischen Industrie, Frankfurt, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Riedel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerr, A., Miehe, G., Serghiou, G. et al. Synthesis of cubic silicon nitride. Nature 400, 340–342 (1999). https://doi.org/10.1038/22493

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/22493

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing