Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myoglobin-like aerotaxis transducers in Archaea and Bacteria

Abstract

Haem-containing proteins such as haemoglobin and myoglobin play an essential role in oxygen transport and storage. Comparison of the amino-acid sequences of globins from Bacteria and Eukarya suggests that they share an early common ancestor, even though the proteins perform different functions in these two kingdoms1,2,3,4,5,6. Until now, no members of the globin family have been found in the third kingdom, Archaea. Recent studies of biological signalling in the Bacteria and Eukarya have revealed a new class of haem-containing proteins that serve as sensors7. Until now, no haem-based sensor has been described in the Archaea. Here we report the first myoglobin-like, haem-containing protein in the Archaea, and the first haem-based aerotactic transducer in the Bacteria (termed HemAT-Hs for the archaeon Halobacterium salinarum, and HemAT-Bs for Bacillus subtilis). These proteins exhibit spectral properties similar to those of myoglobin and trigger aerotactic responses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The conserved sequences within HemAT-Hs, HemAT-Bs, sperm-whale myoglobin (SWMb) and Tsr.
Figure 2: Characterization of HemAT proteins.
Figure 3: Absorption spectra of purified HemAT-Hs, HemAT-Bs and horse-heart myoglobin (HHMb).
Figure 4: Aerotactic responses in H. salinarum and B. subtilis.

Similar content being viewed by others

References

  1. Wakabayashi, S., Matsubara, H. & Webster, D. A. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322, 481–483 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Potts, M., Angeloni, S. V., Ebel, R. E. & Bassam, D. Myoglobin in a Cyanobacterium. Science 256, 1690–1691 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Anderson, C. R., Jensen, E. O., Llewellyn, D. J., Dennis, E. S. & Peacock, W. J. A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proc. Natl Acad. Sci. USA. 93, 5682–5687 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Hardison, R. Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J. Exp. Biol. 201, 1099–1117 (1998).

    CAS  PubMed  Google Scholar 

  5. Suzuki, T. & Imai, K. Evolution of myoglobin. Cell Mol. Life Sci. 54, 979–1004 (1998).

    Article  CAS  Google Scholar 

  6. Hardison, R. The Evolution of Hemoglobin. Am. Sci. 87, 126–137 (1999).

    Article  Google Scholar 

  7. Rodgers, K. R. Heme-based sensors in biological systems. Curr. Opin. Chem. Biol. 3, 158–167 (1999).

    Article  CAS  Google Scholar 

  8. Zhang, W., Brooun, A., McCandless, J., Banda, P. & Alam, M. Signal transduction in the archaeon Halobacterium salinarium is processed through three subfamilies of 13 soluble and membrane-bound transducer proteins. Proc. Natl Acad. Sci. USA 93, 4649–4654 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Kunst, F. et al. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249–256 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Boyd, A., Kendall, K. & Simon, M. I. Structure of the serine chemoreceptor in Escherichia coli. Nature 301, 623–626 (1983).

    Article  ADS  CAS  Google Scholar 

  11. Bashford, D., Chothia, C. & Lesk, A. M. Determinants of a protein fold. Unique features of the globin amino acid sequences. J. Mol. Biol. 196, 199–216 (1987).

    Article  CAS  Google Scholar 

  12. Vinogradov, S. N., Walz, D. A. & Pohajdak, B. Organization of non-vertebrate globin genes. Comp. Biochem. Physiol. 103, 759–773 (1992).

    CAS  Google Scholar 

  13. Ihara, K. & Mukohata, Y. The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Arch. Biochem. Biophys. 286, 111–116 (1991).

    Article  CAS  Google Scholar 

  14. Brooun, A. Primary Structures and Functional Analysis of the Four Transducers: HtrIV, HtrVIII, HtrX and HtrXI from the Archaeon Halobacterium salinarum. Thesis, Univ. Hawaii (1997).

    Google Scholar 

  15. Brooun, A., Bell, J., Freitas, T., Larsen, R. W. & Alam, M. An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cyctochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins. J. Bacteriol. 180, 1642–1646 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lindbeck, J. C., Goulbourne, E. A., Johnson, M. S. & Taylor, B. L. Aerotaxis in Halobacterium salinarium is methylation-dependent. Microbiology 141, 2945–2953 (1995).

    Article  CAS  Google Scholar 

  17. Wong, L. S., Johnson, M. S., Zhulin, I. B. & Taylor, B. L. Role of methylation in aerotaxis in Bacillus subtilis. J. Bacteriol. 177, 3985–3991 (1995).

    Article  CAS  Google Scholar 

  18. Taylor, B. L. & Zhulin, I. B. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63, 479–506 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhulin, I. B. & Taylor, B. L. Correlation of PAS domains with electron transport-associated proteins in completely sequenced microbial genomes. Mol. Microbiol. 29, 1522–1523 (1998).

    CAS  PubMed  Google Scholar 

  20. Gilles-Gonzalez, M. A., Ditta, G. S. & Helinski, D. R. A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti. Nature 350, 170–172 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Monson, E. K., Weinstein, M., Ditta, G. S. & Helinski, D. R. The FixL protein of Rhizobium meliloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. Proc. Natl Acad. Sci. USA 89, 4280–4284 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Zhulin, I. B., Taylor, B. L. & Dixon, R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22, 331–333 (1997).

    Article  Google Scholar 

  23. Gong, W. et al. Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. Proc. Natl Acad. Sci. USA 95, 15177–15182 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Rebbapragada, A. et al. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc. Natl Acad. Sci. USA 94, 10541–10546 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Bibikov, S. I., Biran, R., Rudd, K. E. & Parkinson, J. S. A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol. 179, 4075–4079 (1997).

    Article  CAS  Google Scholar 

  26. Vagner, V., Dervyn, E. & Ehrlich, S. D. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144, 3097–3104 (1998).

    Article  CAS  Google Scholar 

  27. Leonhardt, H. & Alonso, J. C. Construction of a shuttle vector for inducible gene expression in Escherichia coli and Bacillus subtilis. J. Gen. Microbiol. 134, 605–609 (1988).

    CAS  PubMed  Google Scholar 

  28. Alam, M. & Hazelbauer, G. L. Structural features of methyl-accepting taxis proteins conserved between archaebacteria and eubacteria revealed by antigenic cross-reation. J. Bacteriol. 173, 5837–5842 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. G. deCouet, S. Donachie, G. L. Hazelbauer, M. Manson and O. R. Zaborsky for helpful comments on the manuscript, A. Brooun for the hemAT-Hs deletion strains, H. Chen and J. Yang for participation in the initial stage of protein purification, T. Freitas for preparing Fig. 1, and J. Spudich for the shuttle vector pKJ427. This investigation was supported by National Science Foundation CAREER grant to M.A. HemAT-Hs (HtB) has been given GenBank accession number U75436, and HemAT-Bs (YhfV) GenBank accession number Y14084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maqsudul Alam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, S., Larsen, R., Boudko, D. et al. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403, 540–544 (2000). https://doi.org/10.1038/35000570

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000570

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing