Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cool Indonesian throughflow as a consequence of restricted surface layer flow

Abstract

Approximately 10 million m3 s-1 of water flow from the Pacific Ocean into the Indian Ocean through the Indonesian seas1. Within the Makassar Strait, the primary pathway of the flow2, the Indonesian throughflow is far cooler than estimated earlier, as pointed out recently on the basis of ocean current and temperature measurements3,4. Here we analyse ocean current and stratification data along with satellite-derived wind measurements, and find that during the boreal winter monsoon, the wind drives buoyant, low-salinity Java Sea surface water into the southern Makassar Strait, creating a northward pressure gradient in the surface layer of the strait. This surface layer ‘freshwater plug’ inhibits the warm surface water from the Pacific Ocean from flowing southward into the Indian Ocean, leading to a cooler Indian Ocean sea surface5,6,7, which in turn may weaken the Asian monsoon8. The summer wind reversal eliminates the obstructing pressure gradient, by transferring more-saline Banda Sea surface water into the southern Makassar Strait. The coupling of the southeast Asian freshwater budget to the Pacific and Indian Ocean surface temperatures by the proposed mechanism may represent an important negative feedback within the climate system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Indonesian seas.
Figure 2: Profile of meridional velocity and transport as measured from mooring no. 1 (Fig. 1).
Figure 3: Differences in density and dynamic height within the upper 100 m between the northern and southern Makassar Strait (northern subtracted from southern) for two monsoon phases.
Figure 4: Makassar Strait surface layer current and Java and Makassar wind time series.

Similar content being viewed by others

References

  1. Gordon, A. L. in Ocean Circulation and Climate: Observing and Modeling the Global Ocean (ed. Gould, J.) 303–314 (Academic, San Diego, 2001)

    Book  Google Scholar 

  2. Gordon, A. L. & Fine, R. A. Pathways of water between the Pacific and Indian Oceans in the Indonesian seas. Nature 379, 146–149 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Ffield, A., Vranes, K., Gordon, A. L., Susanto, R. D. & Garzoli, S. L. Temperature variability within Makassar Strait. Geophys. Res. Lett. 27, 237–240 (2000)

    Article  ADS  Google Scholar 

  4. Vranes, K., Gordon, A. L. & Ffield, A. The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget. Deep-Sea Res. II 49, 1391–1410 (2002)

    Article  ADS  Google Scholar 

  5. Lee, T., Fukumori, I., Menemenlis, D., Xing, Z. & Fu, L. Effects of the Indonesian Throughflow on the Pacific and Indian Oceans. J. Phys. Oceanogr. 32, 1404–1429 (2002)

    Article  ADS  Google Scholar 

  6. Hirst, A. C. & Godfrey, J. S. The role of Indonesian Throughflow in a global ocean GCM. J. Phys. Oceanogr. 23, 1057–1086 (1993)

    Article  ADS  Google Scholar 

  7. Godfrey, S. The effect of the Indonesian Throughflow on ocean circulation and heat exchange with the atmosphere: A review. J. Geophys. Res. 101, 12217–12237 (1996)

    Article  ADS  Google Scholar 

  8. Wajsowicz, R. Air-sea interaction over the Indian Ocean due to variations in the Indonesian Throughflow. Clim. Dyn. 18, 437–453 (2002)

    Article  Google Scholar 

  9. Wajsowicz, R. & Schneider, E. K. The Indonesian throughflow's effect on global climate determined from the COLA coupled climate system. J. Clim. 14, 3029–3042 (2001)

    Article  ADS  Google Scholar 

  10. Ilahude, A. G. & Gordon, A. L. Thermocline stratification within the Indonesian Seas. J. Geophys. Res. 101, 12401–12409 (1996)

    Article  ADS  Google Scholar 

  11. Van Aken, H. M., Punjanan, J. & Saimima, S. Physical aspects of the flushing of the east Indonesian basins. Neth. J. Sea Res. 22, 315–339 (1988)

    Article  Google Scholar 

  12. Piola, A. R. & Gordon, A. L. On oceanic heat and fresh-water fluxes at 30°S. J. Phys. Oceanogr. 16, 2184–2190 (1986)

    Article  ADS  Google Scholar 

  13. Toole, J. M. & Warren, B. A. A hydrographic section across the subtropical South Indian Ocean. Deep-Sea Res. I 40, 1973–2019 (1993)

    Article  CAS  Google Scholar 

  14. Robbins, P. E. & Toole, J. M. The dissolved silica budget as a constraint on the meridional overturning circulation of the Indian Ocean. Deep-Sea Res. I 44, 879–906 (1997)

    Article  CAS  Google Scholar 

  15. Macdonald, A. M. Property fluxes at 30S and their implications for the Pacific-Indian throughflow and the global heat budget. J. Geophys. Res. 98, 6851–6868 (1993)

    Article  ADS  Google Scholar 

  16. Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Ganachaud, A. & Wunsch, C. Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Clim. 16, 696–705 (2003)

    Article  ADS  Google Scholar 

  18. Gordon, A. L., Susanto, R. D. & Ffield, A. Throughflow within Makassar Strait. Geophys. Res. Lett. 26, 3325–3328 (1999)

    Article  ADS  Google Scholar 

  19. Molcard, R., Fieux, M. & Ilahude, A. G. The Indo-Pacific throughflow in the Timor Passage. J. Geophys. Res. 101, 12411–12420 (1996)

    Article  ADS  Google Scholar 

  20. Molcard, R., Fieux, M. & Syamsudin, F. The throughflow within Ombai Strait. Deep-Sea Res. I 48, 1237–1253 (2001)

    Article  Google Scholar 

  21. Murray, S. P. & Arief, D. Throughflow into the Indian Ocean through the Lombok Strait, January 1985–January 1986. Nature 333, 444–447 (1988)

    Article  ADS  Google Scholar 

  22. Oberhuber, J. M. An Atlas Based on “COADS” Data Set (Tech. Rep. 15, Max-Planck-Institut für Meteorologie, Hamburg, 1988).

  23. Wyrtki, K. Physical Oceanography of the Southeast Asian Waters (NAGA Rep. 2, Scripps Institution of Oceanography, La Jolla, 1961).

  24. Mariano, A. J., Ryan, E. H., Perkins, B. D. & Smithers, S. The Mariano Global Surface Velocity Analysis 55 (United States Coast Guard, Washington DC, 1995)

    Google Scholar 

  25. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode on the tropical Indian Ocean. Nature 401, 360–363 (1999)

    ADS  CAS  PubMed  Google Scholar 

  26. Susanto, R. D., Gordon, A. L. & Zheng, Q. N. Upwelling along the coasts of Java and Sumatra and its relation to ENSO. Geophys. Res. Lett. 28, 1599–1602 (2001)

    Article  ADS  Google Scholar 

  27. Schneider, N. The Indonesian throughflow and the global climate system. J. Clim. 11, 676–689 (1998)

    Article  ADS  Google Scholar 

  28. Wajsowicz, R. C. & Schopf, P. S. Oceanic influences on the seasonal cycle in evaporation over the Indian Ocean. J. Clim. 14, 1199–1226 (2001)

    Article  ADS  Google Scholar 

  29. Conkright, M. E. et al. World Ocean Atlas CD-ROM Data Set Documentation (Internal Report 15, National Oceanographic Data Center, Silver Spring, Maryland, 1998).

Download references

Acknowledgements

This research is supported by the National Science Foundation, the National Aeronautics and Space Administration and the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold L. Gordon.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, A., Susanto, R. & Vranes, K. Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature 425, 824–828 (2003). https://doi.org/10.1038/nature02038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02038

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing