Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature

Abstract

Protein coats deform flat lipid membranes into buds and capture membrane proteins to form transport vesicles1,2,3. The assembly/disassembly cycle of the COPI coat on Golgi membranes is coupled to the GTP/GDP cycle of the small G protein Arf1. At the heart of this coupling is the specific interaction of membrane-bound Arf1–GTP with coatomer, a complex of seven proteins that forms the building unit of the COPI coat4,5,6,7. Although COPI coat disassembly requires the catalysis of GTP hydrolysis in Arf1 by a specific GTPase-activating protein (ArfGAP1)8,9,10, the precise timing of this reaction during COPI vesicle formation is not known. Using time-resolved assays for COPI dynamics on liposomes of controlled size, we show that the rate of ArfGAP1-catalysed GTP hydrolysis in Arf1 and the rate of COPI disassembly increase over two orders of magnitude as the curvature of the lipid bilayer increases and approaches that of a typical transport vesicle. This leads to a model for COPI dynamics in which GTP hydrolysis in Arf1 is organized temporally and spatially according to the changes in lipid packing induced by the coat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane curvature increases ArfGAP1 activity.
Figure 2: Membrane curvature increases the rate of COPI disassembly.
Figure 3: Membrane curvature facilitates the co-assembly of Arf1–GDP with ArfGAP1 and coatomer in the presence of AlFx.
Figure 4: Model for the temporal and spatial distribution of ArfGAP1-catalysed GTP hydrolysis in Arf1 during the formation of a COPI bud.

Similar content being viewed by others

References

  1. Rothman, J. E. & Wieland, F. T. Protein sorting by transport vesicles. Science 272, 227–234 (1996)

    Article  ADS  CAS  Google Scholar 

  2. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Kirchhausen, T. Three ways to make a vesicle. Nature Rev. Mol. Cell Biol. 1, 187–198 (2000)

    Article  CAS  Google Scholar 

  4. Serafini, T. et al. ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253 (1991)

    Article  CAS  Google Scholar 

  5. Donaldson, J. G., Cassel, D., Kahn, R. A. & Klausner, R. D. ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc. Natl Acad. Sci. USA 89, 6408–6412 (1992)

    Article  ADS  CAS  Google Scholar 

  6. Orci, L., Palmer, D. J., Amherdt, M. & Rothman, J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature 364, 732–734 (1993)

    Article  ADS  CAS  Google Scholar 

  7. Zhao, L. et al. Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc. Natl Acad. Sci. USA 94, 4418–4423 (1997)

    Article  ADS  CAS  Google Scholar 

  8. Tanigawa, G. et al. Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell Biol. 123, 1365–1371 (1993)

    Article  CAS  Google Scholar 

  9. Cukierman, E., Huber, I., Rotman, M. & Cassel, D. The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999–2002 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Reinhard, C., Schweikert, M., Wieland, F. T. & Nickel, W. Functional reconstitution of COPI coat assembly and disassembly using chemically defined components. Proc. Natl Acad. Sci. USA 100, 8253–8257 (2003)

    Article  ADS  CAS  Google Scholar 

  11. Antonny, B., Huber, I., Paris, S., Chabre, M. & Cassel, D. Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 272, 30848–30851 (1997)

    Article  CAS  Google Scholar 

  12. Stamnes, M., Schiavo, G., Stenbeck, G., Sollner, T. H. & Rothman, J. E. ADP-ribosylation factor and phosphatidic acid levels in Golgi membranes during budding of coatomer-coated vesicles. Proc. Natl Acad. Sci. USA 95, 13676–13680 (1998)

    Article  ADS  CAS  Google Scholar 

  13. Yanagisawa, L. L. et al. Activity of specific lipid-regulated ADP ribosylation factor-GTPase-activating proteins is required for Sec14p-dependent Golgi secretory function in yeast. Mol. Biol. Cell 13, 2193–2206 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mayer, L. D., Hope, M. J. & Cullis, P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858, 161–168 (1986)

    Article  CAS  Google Scholar 

  15. Brown, M. T. et al. ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell. Biol. 18, 7038–7051 (1998)

    Article  CAS  Google Scholar 

  16. Randazzo, P. A. et al. The Arf GTPase-activating protein ASAP1 regulates the actin cytoskeleton. Proc. Natl Acad. Sci. USA 97, 4011–4016 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Spang, A., Matsuoka, K., Hamamoto, S., Schekman, R. & Orci, L. Coatomer, Arf1p, and nucleotide are required to bud coat protein complex I-coated vesicles from large synthetic liposomes. Proc. Natl Acad. Sci. USA 95, 11199–11204 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Bremser, M. et al. Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96, 495–506 (1999)

    Article  CAS  Google Scholar 

  19. Antonny, B., Madden, D., Hamamoto, S., Orci, L. & Schekman, R. Dynamics of the COPII coat with GTP and stable analogues. Nature Cell Biol. 3, 531–537 (2001)

    Article  CAS  Google Scholar 

  20. Goldberg, J. Decoding of sorting signals by coatomer through a GTPase switch in the COPI coat complex. Cell 100, 671–679 (2000)

    Article  CAS  Google Scholar 

  21. Chabre, M. Aluminofluoride and beryllofluoride complexes: new phosphate analogs in enzymology. Trends Biochem. Sci. 15, 6–10 (1990)

    Article  CAS  Google Scholar 

  22. Scheffzek, K., Ahmadian, M. R. & Wittinghofer, A. GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci. 23, 257–262 (1998)

    Article  CAS  Google Scholar 

  23. Finazzi, D., Cassel, D., Donaldson, J. G. & Klausner, R. D. Aluminum fluoride acts on the reversibility of ARF1-dependent coat protein binding to Golgi membranes. J. Biol. Chem. 269, 13325–13330 (1994)

    CAS  PubMed  Google Scholar 

  24. Zhu, Y., Traub, L. M. & Kornfeld, S. ADP-ribosylation factor 1 transiently activates high-affinity adaptor protein complex AP-1 binding sites on Golgi membranes. Mol. Biol. Cell 9, 1323–1337 (1998)

    Article  CAS  Google Scholar 

  25. Antonny, B., Gounon, P., Schekman, R. & Orci, L. Self-assembly of minimal COPII cages. EMBO Rep. 4, 419–424 (2003)

    Article  CAS  Google Scholar 

  26. Presley, J. F. et al. Dissection of COPI and Arf1 dynamics in vivo and role in Golgi membrane transport. Nature 417, 187–193 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Yang, J. S. et al. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J. Cell Biol. 159, 69–78 (2002)

    Article  CAS  Google Scholar 

  28. Franco, M., Chardin, P., Chabre, M. & Paris, S. Myristoylation of ADP-ribosylation factor 1 facilitates nucleotide exchange at physiological Mg2+ levels. J. Biol. Chem. 270, 1337–1341 (1995)

    Article  CAS  Google Scholar 

  29. Nickel, W. & Wieland, F. T. Receptor-dependent formation of COPI-coated vesicles from chemically defined donor liposomes. Methods Enzymol. 329, 388–404 (2001)

    Article  CAS  Google Scholar 

  30. Matsuoka, K. & Schekman, R. The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods 20, 417–428 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Randazzo and R. Premont for proteins and constructs, J. Moelleken for advice on coatomer purification and lipopeptide synthesis and M. Chabre for discussions. This work was supported by the CNRS (ACI ‘Jeune Chercheur’) and the EMBO Young Investigator Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Antonny.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bigay, J., Gounon, P., Robineau, S. et al. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 426, 563–566 (2003). https://doi.org/10.1038/nature02108

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02108

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing