Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3

Abstract

All magnetically ordered materials can be divided into two primary classes: ferromagnets1,2 and antiferromagnets3. Since ancient times, ferromagnetic materials have found vast application areas4, from the compass to computer storage and more recently to magnetic random access memory and spintronics5. In contrast, antiferromagnetic (AFM) materials, though representing the overwhelming majority of magnetically ordered materials, for a long time were of academic interest only. The fundamental difference between the two types of magnetic materials manifests itself in their reaction to an external magnetic field—in an antiferromagnet, the exchange interaction leads to zero net magnetization. The related absence of a net angular momentum should result in orders of magnitude faster AFM spin dynamics6,7. Here we show that, using a short laser pulse, the spins of the antiferromagnet TmFeO3 can indeed be manipulated on a timescale of a few picoseconds, in contrast to the hundreds of picoseconds in a ferromagnet8,9,10,11,12. Because the ultrafast dynamics of spins in antiferromagnets is a key issue for exchange-biased devices13, this finding can expand the now limited set of applications for AFM materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linear optical birefringence in TmFeO3 as a function of temperature.
Figure 2: Excitation and relaxation of the AFM moment measured via changes in the magnetic birefringence.
Figure 3: Precessional motion of spins in AFM and ferromagnetic compounds and its possible application.
Figure 4: Temperature dependencies of the amplitudes and frequencies of the observed oscillations, as well as the amplitude of the spin reorientation.

Similar content being viewed by others

References

  1. Weiss, P. L'hypothèse du champ moléculaire et la propriété ferromagnétique. (The hypothesis of the molecular field and the property of ferromagnetism.). J. Phys. Rad. 6, 661–669 (1907)

    MATH  Google Scholar 

  2. Stoner, E. C. Magnetism and Matter (Methuen, London, 1934)

    Google Scholar 

  3. Néel, L. Propriétés magnétiques de l'état métallique et énergie d'interaction entre atomes magnétiques. Ann. Phys. IIe Ser. 5, 232–237 (1936)

    Article  ADS  Google Scholar 

  4. Jubileum issue. J. Magn. Magn. Mater. 200, 1–789 (1999).

  5. Roukes, M. L. Electronics in a spin. Nature 411, 747–748 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media (Pergamon, Oxford, 1960)

    MATH  Google Scholar 

  7. Vonsovskii, S. V. Magnetism (John Wiley & Sons, New York, 1974)

    Google Scholar 

  8. Gerrits, Th., van den Berg, H. A. M., Hohlfeld, J., Bär, L. & Rasing, Th. Ultrafast precessional magnetization reversal by picosecond magnetic field pulse shaping. Nature 418, 509–512 (2002)

    Article  ADS  CAS  Google Scholar 

  9. Schumacher, H. W. et al. Phase coherent precessional magnetization reversal in microscopic spin valve elements. Phys. Rev. Lett. 90, 017201 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Schumacher, H. W., Chappert, C., Sousa, R. C., Freitas, P. P. & Miltat, J. Quasiballistic magnetization reversal. Phys. Rev. Lett. 90, 017204 (2003)

    Article  ADS  CAS  Google Scholar 

  11. van Kampen, M. et al. All-optical probe of coherent spin waves. Phys. Rev. Lett. 88, 227201 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Ju, G. et al. Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled system. Phys. Rev. Lett. 82, 3705–3708 (1999)

    Article  ADS  CAS  Google Scholar 

  13. Skumryev, V. et al. Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Kittel, C. Theory of antiferromagnetic resonance. Phys. Rev. 82, 565 (1951)

    Article  ADS  Google Scholar 

  15. Ney, O., Trzeciecki, M. & Hübner, W. Femtosecond dynamics of spin-dependent SHG response from NiO(001). Appl. Phys. B 74, 741–744 (2002)

    Article  ADS  CAS  Google Scholar 

  16. Ferré, J. & Gehring, G. A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys. 47, 513–611 (1984)

    Article  ADS  Google Scholar 

  17. White, R. L. Review of recent work on the magnetic and spectroscopic properties of the rare-earth orthoferrites. J. Appl. Phys. 40, 1061–1069 (1969)

    Article  ADS  CAS  Google Scholar 

  18. Burzo, E. (ed.) Numerical Data and Functional Relationships Landolt-Börnstein New Series, Group III, Vol. 27f, 200–273 (Springer, Berlin, 1996)

  19. Horner, H. & Varma, C. M. Nature of spin-reorientation transitions. Phys. Rev. Lett. 20, 845–846 (1968)

    Article  ADS  CAS  Google Scholar 

  20. Shapiro, S. M., Axe, J. D. & Remeika, J. P. Neutron-scattering studies of spin waves in rare-earth orthoferrites. Phys. Rev. B 10, 2014–2021 (1974)

    Article  ADS  CAS  Google Scholar 

  21. Koster, G. F., Dimmock, J. O., Wheeler, R. G. & Statz, H. Properties of the Thirty-Two Point Groups (MIT Press, Cambridge, Massachusetts, 1963)

    Google Scholar 

  22. Belov, K. P., Volkov, R. A., Goranskii, B. P., Kadomtseva, A. M. & Uskov, V. V. Nature of the transitions during the spontaneous reorientation of spins in rare-earth orthoferrites. Fiz. Tverd. Tela 11, 1148–1151 (1969); Sov. Phys. Solid State 11, 935–938 (1969)

    CAS  Google Scholar 

  23. Kimel, A. V., Pisarev, R. V., Bentivegna, F. & Rasing, Th. Time-resolved nonlinear optical spectroscopy of Mn3+ ions in rare-earth hexagonal manganites RMnO3 (R = Sc, Y, Er). Phys. Rev. B 64, 201103 (2001)

    Article  ADS  Google Scholar 

  24. Landau, L. D. & Lifshitz, E. M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Zeit. Sowjetunion 8, 153–169 (1935)

    MATH  Google Scholar 

  25. Andreev, A. F. & Marchenko, V. I. Symmetry and the macroscopic dynamics of magnetic materials. Usp. Fiz. Nauk. 130, 39–63 (1980); Sov. Phys. Usp. 23, 21–34 (1980)

    Article  CAS  Google Scholar 

  26. Kimel, A. V., Pisarev, R. V., Hohlfeld, J. & Rasing, T. H. Ultrafast quenching of the antiferromagnetic order in FeBO3: Direct optical probing of the phonon-magnon coupling. Phys. Rev. Lett. 89, 287401 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Yosida, K. Theory of Magnetism 125–143 (Springer, Berlin, 1998)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European IST network SPINOSA, the RTN network DYNAMICS, the Russian Foundation for Basic Research and Stichting voor Fundamenteel Onderzoek der Materie (FOM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Th. Rasing.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimel, A., Kirilyuk, A., Tsvetkov, A. et al. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004). https://doi.org/10.1038/nature02659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02659

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing