Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks

Abstract

Our Solar System was formed from a cloud of gas and dust. Most of the dust mass is contained in amorphous silicates1, yet crystalline silicates are abundant throughout the Solar System, reflecting the thermal and chemical alteration of solids during planet formation. (Even primitive bodies such as comets contain crystalline silicates2.) Little is known about the evolution of the dust that forms Earth-like planets. Here we report spatially resolved detections and compositional analyses of these building blocks in the innermost two astronomical units of three proto-planetary disks. We find the dust in these regions to be highly crystallized, more so than any other dust observed in young stars until now. In addition, the outer region of one star has equal amounts of pyroxene and olivine, whereas the inner regions are dominated by olivine. The spectral shape of the inner-disk spectra shows surprising similarity with Solar System comets. Radial-mixing models naturally explain this resemblance as well as the gradient in chemical composition. Our observations imply that silicates crystallize before any terrestrial planets are formed, consistent with the composition of meteorites in the Solar System.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spectrum of the innermost disk regions of HD 142527 compared to spectra of typical dust species.
Figure 2: Infrared spectra of the inner (1–2 au) and outer (2–20 au) disk regions of three Herbig Ae stars.
Figure 3: A comparison between the spectral shapes of various astronomical objects (left column) with those of the inner- and outer-disk regions of our three Herbig Ae stars (right column).

Similar content being viewed by others

References

  1. Kemper, F., Vriend, W. J. & Tielens, A. G. G. M. The absence of crystalline silicates in the diffuse interstellar medium. Astrophys. J. 609, 826–837 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Hanner, M. S., Lynch, D. K. & Russell, R. W. The 8-13 micron spectra of comets and the composition of silicate grains. Astrophys. J. 425, 274–285 (1994)

    Article  ADS  Google Scholar 

  3. Haisch, K. E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 533, L153–L156 (2001)

    Article  ADS  Google Scholar 

  4. Beckwith, S. V. W., Henning, T. & Nakagawa, Y. Dust properties and assembly of large particles in protoplanetary disks. In Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 533–558 (Univ. Arizona Press, 2000)

  5. Bradley, J. in Lecture Notes in Physics Vol. 609 Astromineralogy (ed. Henning, Th.) 217–235 (2003).

  6. Leinert, C. et al. Ten-micron instrument MIDI: getting ready for observations on the VLTI. in Interferometry for Optical Astronomy II (ed. Traub, W.A.). Proc. SPIE 4838, 893–904 (2003).

  7. Eisner, J. A., Lane, B. F., Akeson, R. L., Hillenbrand, L. A. & Sargent, A. I. Near-infrared interferometric measurements of Herbig Ae/Be Stars. Astrophys. J. 588, 360–372 (2003)

    Article  ADS  Google Scholar 

  8. Leinert, C. et al. Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI. Astron. Astrophys. 423, 537–548 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Molster, F. J. & Waters, L. B. F. M. in Lecture Notes in Physics Vol. 609 Astromineralogy (ed. Henning, Th.) 121–170 (2003).

  10. Bouwman, J. et al. Processing of silicate dust grains in Herbig Ae/Be systems. Astron. Astrophys. 375, 950–962 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Gail, H.-P. Radial mixing in protoplanetary accretion disks. IV. Metamorphosis of the silicate dust complex. Astron. Astrophys. 413, 571–591 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Nuth, J. A., Rietmeijer, F. J. M. & Hill, H. G. M. Condensation processes in astrophysical environments: The composition and structure of cometary grains. Meteorit. Planet. Sci. 37, 1579–1590 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Harker, D. E. & Desch, S. J. Annealing of silicate dust by nebular shocks at 10 AU. Astrophys. J. Lett. 565, L109–L112 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Pilipp, W., Hartquist, T. W., Morfill, G. E. & Levy, E. H. Chondrule formation by lightning in the Protosolar Nebula? Astron. Astrophys. 331, 121–146 (1998)

    ADS  CAS  Google Scholar 

  15. Desch, S. J. & Cuzzi, J. N. The generation of lighting in the solar nebula. Icarus 143, 87–105 (2000)

    Article  ADS  CAS  Google Scholar 

  16. Brearley, A. & Jones, R. H. in Planetary Materials (ed. Papike, J.) Ch. 3 (The Mineralogical Society of America, 1998)

    Google Scholar 

  17. Sandford, S. A. & Walker, R. M. Laboratory infrared transmission spectra of individual interplanetary dust particles from 2.5 to 25 microns. Astrophys. J. 291, 838–851 (1985)

    Article  ADS  CAS  Google Scholar 

  18. Crovisier, J. et al. The spectrum of Comet Hale-Bopp (C/1995 01) observed with the Infrared Space Observatory at 2.9 AU from the Sun. Science 275, 1904–1907 (1997)

    Article  ADS  CAS  Google Scholar 

  19. Molster, F. J., Waters, L. B. F. M., Tielens, A. G. G. M., Koike, C. & Chihara, H. Crystalline silicate dust around evolved stars. III. A correlations study of crystalline silicate features. Astron. Astrophys. 382, 241–255 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Malfait, K. et al. The spectrum of the young star HD 100546 observed with the Infrared Space Observatory. Astron. Astrophys. 332, L25–L28 (1998)

    ADS  Google Scholar 

  21. Grady, C. A. et al. Infalling planetesimals in pre-main stellar systems. In Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 613–638 (Univ. Arizona Press, 2000)

  22. Acke, B. & van den Ancker, M. E. ISO spectroscopy of disks around Herbig Ae/Be stars. Astron. Astrophys.(in the press); preprint at 〈http://xxx.lanl.gov/astro-ph/0406050〉 (2004)

  23. Wetherill, G. W. Formation of the earth. Annu. Rev. Earth Planet. Sci. 18, 205–256 (1990)

    Article  ADS  Google Scholar 

  24. Dorschner, J., Begemann, B., Henning, T., Jäger, C. & Mutschke, H. Steps toward interstellar silicate mineralogy. Astron. Astrophys. 300, 503–520 (1995)

    ADS  CAS  Google Scholar 

  25. Servoin, J. L. & Piriou, B. Infrared reflectivity and Raman scattering of Mg2SiO4 single crystal. Phys. Status Solidi 55, 677–686 (1973)

    Article  CAS  Google Scholar 

  26. Jäger, C. et al. Steps toward interstellar silicate mineralogy. IV. The crystalline revolution. Astron. Astrophys. 339, 904–916 (1998)

    ADS  Google Scholar 

  27. Spitzer, W. G. & Kleinman, D. A. Infrared lattice bands of quartz. Phys. Rev. 121, 1324–1335 (1961)

    Article  ADS  CAS  Google Scholar 

  28. Min, M., Hovenier, J. W. & de Koter, A. Shape effects in scattering and absorption by randomly oriented particles small compared to the wavelength. Astron. Astrophys. 404, 35–46 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Chihara, H., Koike, C. & Tsuchiyama, A. Low-temperature optical properties of silicate particles in the far-infrared region. Publ. Astron. Soc. Jpn 53, 243–250 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The data is based on observations obtained at the European Southern Observatory (ESO), Chile. We thank all those involved in building VLTI and MIDI. We thank V. Icke for providing the illustration shown in Fig. 2. C.P. Dullemond is acknowledged for many discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. van Boekel.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information

Contains a more detailed discussion of our data analysis and error estimation: Fitting procedure, error analysis, Supplementary Figure 1 and references. (PDF 97 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Boekel, R., Min, M., Leinert, C. et al. The building blocks of planets within the ‘terrestrial’ region of protoplanetary disks. Nature 432, 479–482 (2004). https://doi.org/10.1038/nature03088

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03088

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing