Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Membrane fluidity of a fatty acid auxotroph grown with palmitic acid

Abstract

HOMEOVISCOUS adaptation, whereby the fatty acid composition and unsaturation of complex lipid bilayers in membranes may be adjusted to maintain fluidity irrespective of growth temperature, has been demonstrated for Escherichia coli1, Acholeplasma laidlawii2 and Bacillus stearothermophilus3. Even at high temperatures, a minimum amount of unsaturated fatty acid is required for growth of an E. coli auxotroph4, and generally, for A. laidlawii B, at least half the lipids must be in the fluid or disordered state to allow normal growth5. Unlike the fatty acid auxotrophs of E. coli and A. laidlawii used in previous investigations of membrane fluidity2,4,5, a fatty acid auxotrophic Butyrivibrio sp. (strain S2) isolated from the ovine rumen was found to be unable to synthesise long-chain fatty acids and incorporated palmitic acid, without desaturation, into lipids of the plasmalogen type partially as a new long-chain dicarboxylic acid6. This gave an opportunity to study the lipid composition of a microorganism with a defined fatty acid availability, and also to study the state of fluidity of its membranes in the complete absence of acyl chain unsaturation. We report here a study of membrane lipid fluidity in Butyrivibrio S2 using the electron spin resonance (ESR) probe 5-doxylstearic acid. Considerable rigidity of hydrocarbon chains is demonstrated but a phase change or structural reorganisation occurs at the lowest temperature, allowing optimal growth of the organism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sinensky, M. Proc. natn. Acad. Sci. U.S.A. 71, 522–525 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Huang, L., Lorch, S. K., Smith, G. G. & Haug, A. FEBS Lett. 43, 1–5 (1974).

    Article  CAS  Google Scholar 

  3. Esser, A. F. & Souza, K. A. Proc. natn. Acad. Sci. U.S.A. 71, 4111–4115 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Jackson, M. B. & Cronan, J. E. Biochim. biophys. Acta 512, 472–479 (1978).

    Article  CAS  Google Scholar 

  5. McElhaney, R. N. J. molec. Biol. 84, 145–157 (1974).

    Article  CAS  Google Scholar 

  6. Hazlewood, G. P. & Dawson, R. M. C. J. gen. Microbiol. 112, 15–27 (1979).

    Article  CAS  Google Scholar 

  7. Klein, R. A., Hazlewood, G. P., Kemp, P. & Dawson, R. M. C. (submitted).

  8. Silvius, J. R. & McElhaney, R. N. Nature 272, 645–647 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Khuller, G. K. & Goldfine, H. J. Lipid Res. 15, 500–507 (1974).

    CAS  PubMed  Google Scholar 

  10. Roots, B. I. & Johnston, P. V. Comp. Biochem. Physiol. 26, 553–560 (1968).

    Article  CAS  Google Scholar 

  11. Clarke, N. G., Hazlewood, G. P. & Dawson, R. M. C. Chem. Phys. Lipids 17, 222–232 (1976).

    Article  CAS  Google Scholar 

  12. McElhaney, R. N. in Extreme Environments: Mechanisms of Microbial Adaptation (ed. Heinrich, M. R.) 255–281 (Academic, New York, 1976).

    Book  Google Scholar 

  13. Haest, C. W. M. et al. Biochim. biophys. Acta 356, 17–26 (1974).

    Article  CAS  Google Scholar 

  14. Janiak, M. J., Small, D. M. & Shipley, G. G. Biochemistry 15, 4575–4580 (1976).

    Article  CAS  Google Scholar 

  15. Hauser, H., Finer, E. G. & Chapman, D. J. molec. Biol. 53, 419–433 (1970).

    Article  CAS  Google Scholar 

  16. Baldassare, J. J., Robertson, D. E., McAfee, A. G. & Ho, C. Biochemistry 13, 5210–5214 (1974).

    Article  CAS  Google Scholar 

  17. Kaplan, J., Canonico, P. G. & Caspary, W. J. Proc. natn. Acad. Sci. U.S.A. 70, 66–70 (1973).

    Article  ADS  CAS  Google Scholar 

  18. Landsberger, F. R., Paxton, J. & Lenard, J. Biochim. biophys. Acta 266, 1–6 (1971).

    Google Scholar 

  19. Seelig, J. & Hasselbach, W. Eur. J. Biochem. 21, 17–21 (1971).

    Article  CAS  Google Scholar 

  20. Baldassare, J. J., McAfee, A. G. & Ho, C. Biochem. biophys. Res. Commun. 53, 617–623 (1973).

    Article  CAS  Google Scholar 

  21. Rottem, S., Hubbell, W. L., Hayflick, L. & McConnell, H. M. Biochim. biophys. Acta 219, 104–113 (1970).

    Article  CAS  Google Scholar 

  22. Chignell, C. F. & Chignell, D. A. Biochem. biophys. Res. Commun. 62, 136–143 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HAUSER, H., HAZLEWOOD, G. & DAWSON, R. Membrane fluidity of a fatty acid auxotroph grown with palmitic acid. Nature 279, 536–538 (1979). https://doi.org/10.1038/279536a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/279536a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing