Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The higher order structure of chicken erythrocyte chromosomes in vivo

Abstract

Recently eukaryotic chromosomes have been shown to consist of a repeating subunit, called the nucleosome1. Although electron microscopy, neutron scattering and X-ray diffraction have been used to determine the low resolution structure of the nucleosome, these techniques have yielded little information about the disposition of nucleosomes within chromosomes. Electron microscopy has produced many models for chromosome structure based on uniform fibres of 50–500Å diameter or on globular ‘superbeads’2–6. Unfortunately the models are based on microscope images that fail to reveal the strong structural periodicities shown by X-ray scattering to be characteristic of isolated chromatin in solution. Moreover it has not been demonstrated that the chromosomes of living cells are composed of such fibres. We have used low-angle X-ray scattering to investigate the organization of chromosomes in vivo and to account for the previously observed inconsistencies in many X-ray and electron microscope observations. We report here that chicken erythrocytes have a 400 Å periodicity due to a nuclear structure that is directly related to the 300 Å side-by-side packing of chromosome fibres revealed by electron microscopy of embedded cells, and that this periodicity can be preserved in isolated nuclei provided that the proper buffers are used.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Felsenfeld, G. Nature 271, 115–122 (1977).

    Article  ADS  Google Scholar 

  2. Ris, H. & Kubai, D. F. A. Rev. Genet. 4, 263–294 (1970).

    Article  CAS  Google Scholar 

  3. Davies, H. G. J. Cell Sci. 3, 129–150 (1968).

    CAS  PubMed  Google Scholar 

  4. Walmsley, M. E. & Davies, H. G. J. Cell Sci. 17, 113–139 (1975).

    CAS  PubMed  Google Scholar 

  5. Finch, J. T. & Klug, A. Proc. natn. Acad. Sci. U.S.A. 73, 1897–1901 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Renz, M., Nehls, P. & Hozier, J. Proc. natn. Acad. Sci. U.S.A. 74, 1879–1882 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Luzzati, V. & Nicolaieff, A. J. molec. Biol. 1, 127–133 (1959).

    Article  CAS  Google Scholar 

  8. Wilkins, M. H. F., Zubay, G. & Wilson, H. R. J. molec. Biol. 1, 179–185 (1959).

    Article  CAS  Google Scholar 

  9. Luzzati, V. & Nicolaieff, A. J. molec. Biol. 7, 142–163 (1963).

    Article  CAS  Google Scholar 

  10. Nicolaieff, A. in Small Angle X-Ray Scattering (ed. Brumberger, H.) 221 (Gordon and Breach, New York, 1967).

    Google Scholar 

  11. Garrett, R. A. Biochim. biophys. Acta 246, 553–560 (1971).

    Article  CAS  Google Scholar 

  12. Pooley, A. S., Pardon, J. F. & Richards, B. M. J. molec. Biol. 85, 533–549 (1974).

    Article  CAS  Google Scholar 

  13. Sperling, L. & Klug, A. J. molec. Biol. 112, 253–263 (1977).

    Article  CAS  Google Scholar 

  14. Carpenter, B. G., Baldwin, J. P., Bradbury, E. M. & Ibel, K. Nucleic Acids Res. 3, 1739–1746 (1976).

    Article  CAS  Google Scholar 

  15. Bram, S., Butler-Browne, G., Baudy, P. & Ibel, K. Proc. natn. Acad. Sci. U.S.A. 72, 1043–1045 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Suau, P., Bradbury, E. M. & Baldwin, J. P. Eur. J. Biochem. 97, 593–602 (1979).

    Article  CAS  Google Scholar 

  17. Campbell, A. M., Cotter, R. I. & Pardon, J. F. Nucleic Acids Res. 5, 1571–1580 (1978).

    Article  CAS  Google Scholar 

  18. Thoma, F., & Koller, Th. J. Cell Biol. 83, 403–427 (1979).

    Article  CAS  Google Scholar 

  19. Olins, D. E. & Olins, A. L. J. Cell Biol. 53, 715–736 (1972).

    Article  CAS  Google Scholar 

  20. Baudy, P. & Bram, S. Nucleic Acids Res. 6, 1721–1727 (1979).

    Article  CAS  Google Scholar 

  21. Bram, S. & Beeman, W. W. J. molec. Biol. 55, 311–324 (1971).

    Article  CAS  Google Scholar 

  22. Franks, A. Proc. phys. Sac. B 68, 1054–1064 (1955).

    Article  ADS  Google Scholar 

  23. Morimoto, H. & Uyeda, R. Acta crystallogr. 16, 1107–1119 (1963).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langmore, J., Schutt, C. The higher order structure of chicken erythrocyte chromosomes in vivo. Nature 288, 620–622 (1980). https://doi.org/10.1038/288620a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288620a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing