Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains

Abstract

We have identified a group of 8 (among 39) human tumour cell strains deficient in the ability to support the growth of adenovirus 5 preparations treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), but able to support the growth of non-treated adenovirus normally1,2. This deficient behaviour defines the Mer phenotype2. Strains having the Mer phenotype were found to arise from tumours originating in four different organs. Relative to Mer+ strains, Mer tumour strains showed greater sensitivity to MNNG-produced killing, greater MNNG-stimulated ‘DNA repair’ synthesis and a more rapid MNNG-produced decrease in semi-conservative DNA synthesis2. Here we report that (1) Mer strains are deficient in removing O6-methylguanine (O6-MeG) from their DNA after [Me-14C]MNNG treatment (Table 1); (2) Mer tumour strains originate from tumours arising in patients having Mer+ normal fibroblasts (Fig. 1a, b); (3) SV40 transformation of (Mer+) human fibroblasts often converts them to Mer strains (Fig. 1c, d): (4) MNNG produces more sister chromatid exchanges (SCEs) in Mer than in Mer+ cell strains (Fig. 2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Day, R. S. III & Ziolkowski, C. H. J. Nature 279, 797–799 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Day, R. S. III, Ziolkowski, C. H. J., Scudiero, D. A., Meyer, S. A. & Mattern, M. R. Carcinogenesis 1, 21–32 (1980).

    Article  CAS  Google Scholar 

  3. Montesano, R., Bresil, H. & Margison, G. P. Cancer Res. 39, 1798–1802 (1979).

    CAS  Google Scholar 

  4. Bodell, W. J., Singer, B., Thomas, G. H. & Cleaver, J. E. Nucleic Acids Res. 6, 2819–2829 (1979).

    Article  CAS  Google Scholar 

  5. Altamirano-Dimas, M., Sklar, R. & Strauss, B. Mutat. Res. 60, 197–206 (1979).

    Article  CAS  Google Scholar 

  6. Singer, B. J. natn. Cancer Inst. 62, 1329–1339 (1979).

    CAS  Google Scholar 

  7. Scudiero, D. A. Cancer Res. 40, 984–990 (1980).

    CAS  PubMed  Google Scholar 

  8. Kaplan, M. M., Giard, D. J., Blattner, W. A., Lubiniecki, A. S. & Fraumeni, J. F. Jr Proc. Soc. exp. Biol. Med. 148, 660–664 (1975).

    Article  CAS  Google Scholar 

  9. Latt, S. A. Proc. natn. Acad. Sci. U.S.A. 71, 3162–3166 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Perry, P. & Evans, H. J. Nature 258, 121–125 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Carrano, A. V., Thompson, L. H., Lindl, P. A. & Minkler, J. L. Nature 270, 551–553 (1978).

    Article  ADS  Google Scholar 

  12. Wolff, S. A., Rodin, B. & Cleaver, J. E. Nature 265, 347–349 (1977).

    Article  ADS  CAS  Google Scholar 

  13. De Weerd-Kastelein, E. A., Keijzer, W., Rainaldi, G. & Bootsma, D. Mutat. Res. 45, 253–261 (1977).

    Article  CAS  Google Scholar 

  14. Baker, R. M., Van Voorhis, W. C. & Spencer, L. A. Proc. natn. Acad. Sci. U.S.A. 76, 5249–5253 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Baker, R. M., Zuerndorfer, G. & Mandel, R. Environ. Mutagenesis 2, 269–270 (1980).

    Google Scholar 

  16. Goth-Goldstein, R. Nature 267, 81–82 (1977).

    Article  ADS  CAS  Google Scholar 

  17. Erickson, L. C., Laurent, G., Sharkey, N. A. & Kohn, K. Nature 288, 727–729 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Girardi, A. J., Jensen, F. C. & Koprowski, H. J. cell. comp. Physiol. 65, 69–84 (1965).

    Article  CAS  Google Scholar 

  19. Day, R. S. III Photochem. Photobiol. 19, 9–13 (1974).

    Article  CAS  Google Scholar 

  20. Goto, K., Maeda, S., Kano, Y. & Sugiyama, T. Chromosoma 66, 351–359 (1978).

    Article  CAS  Google Scholar 

  21. Perry, P. & Wolff, S. Nature 251, 156–158 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, R., Ziolkowski, C., Scudiero, D. et al. Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains. Nature 288, 724–727 (1980). https://doi.org/10.1038/288724a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288724a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing