Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Solitary waves in the lower atmosphere

Abstract

Solitary waves are of intense interest in the physical and mathematical sciences1. These nonlinear waves often seem to have a primary role in the asymptotic description of propagating disturbances in inland lakes and coastal waters2–4, in the thermocline of the open sea5 and in the lower atmosphere6,7. We present here new acoustic sounder observations of complex tropospheric solitary-wave disturbances at Tennant Creek in the arid interior of Australia (Fig. 1), a description and interpretation of a new type of visible wave phenomena over northern Australia which appear as thin propagating cumulus cloud lines, and a discussion of observations at Burketown on the Gulf of Carpentaria of a new class of low-altitude propagating solitary-wave roll clouds which originate to the south. These observations, when correlated with observations at Tennant Creek, indicate that solitary-wave-generating disturbances in the form of internal bores8,9 propagate over large distances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Miles, J. W. Ann. Rev. Fluid Mech. 12, 11–43 (1980); Tellus 31, 456–462 (1979).

    Article  ADS  Google Scholar 

  2. Hunkins, K. & Fliegel, M. J. J. geophys. Res. 78, 539–548 (1973).

    Article  ADS  Google Scholar 

  3. Farmer, D. M. & Smith, J. D. in Hydrodynamics of Estuaries and Fjords (ed. Nihoul, J.) (Elsevier, Amsterdam, 1978); Deep-Sea Res. 27 A, 239–254 (1980).

    Google Scholar 

  4. Haury, L. R., Briscoe, M. G. & Orr, M. H. Nature 278, 312–317 (1979).

    Article  ADS  Google Scholar 

  5. Pinkel, R. J. phys. Oceanogr. 9, 675–686 (1979).

    Article  ADS  Google Scholar 

  6. Christie, D. R., Muirhead, K. J. & Hales, A. L. J. atmos. Sci. 15, 805–825 (1978); J. geophys. Res. 84, 4959–4970 (1979).

    Article  ADS  Google Scholar 

  7. Clarke, R. H., Smith, R. K. & Reid, D. G. Mon. Weath. Rev. (in the press).

  8. Tepper, M. J. Met. 7, 21–29 (1950).

    Article  Google Scholar 

  9. Freeman, J. C. Compendium of Meteorology, 421 (Waverley, Baltimore, 1951).

    Book  Google Scholar 

  10. Benjamin, T. B. J. Fluid Mech. 25, 241–270 (1966), 29, 559–592 (1967).

    Article  ADS  Google Scholar 

  11. Davis, R. & Acrivos, A. J. Fluid Mech. 29, 593–607 (1967).

    Article  ADS  Google Scholar 

  12. Ablowitz, M. H., Kaup, D. J., Newell, A. C. & Segur, H. Studies appl. Math. 53, 249–315 (1974).

    Article  Google Scholar 

  13. Segur, H. J. Fluid Mech. 59, 721–736 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  14. Hammack, J. L. & Segur, H. J. Fluid Mech. 65, 289–314 (1974), 84, 337–358 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  15. Joseph, R. I. J. Phys. A10, L225–L227 (1977); J. Math. Phys. 18, 2251–2258 (1977).

    ADS  Google Scholar 

  16. Kubota, T., Ko, D. R. S. & Dobbs, L. J. Hydron. 12, 157–165 (1978).

    Article  Google Scholar 

  17. Maxworthy, T. J. Fluid Mech. 96, 47–64 (1980).

    Article  ADS  Google Scholar 

  18. Meiss, J. D., & Pereira, N. R. Phys. Fluids 21, 700–702 (1978).

    Article  ADS  Google Scholar 

  19. Maslowe, S. A. & Redekopp, L. G. Geophys. Astrophys. Fluid Dynamics, 13, 185–196 (1979); J. Fluid Mech 101, 321–348 (1980).

    Article  ADS  Google Scholar 

  20. Grimshaw, R. Proc. R. Soc. A368, 359–375 (1979); Math. Res. Rep. 44 (University of Melbourne, 1980); Studies appl. Math. (in the press); Proc. R. Soc. (in the press).

    Article  ADS  Google Scholar 

  21. Matsuno, Y. J. Phys. A12, 619–621 (1979); Phys. Lett. 74A, 233–235 (1979).

    ADS  Google Scholar 

  22. Vliegenthart, A. C. J. Engng Math. 5, 137–155 (1971).

    Article  MathSciNet  Google Scholar 

  23. Clarke, R. H. J. appl. Met. 11, 304–311 (1972).

    Article  Google Scholar 

  24. Neal, A. B., Butterworth, I. J. & Murphy, K. M. Weather 32, 176–183 (1977).

    Article  ADS  Google Scholar 

  25. Kao, T. W. & Pao, H.-P. J. Fluid Mech. 97, 115–127 (1979).

    Article  ADS  Google Scholar 

  26. Robin, A. G. Aust. Met. Mag. 26, 125 (1978).

    Google Scholar 

  27. Clarke, R. H. & Brook, R. R. The Koorin Expedition: Atmospheric Boundary Layer Data over Tropical Savannah Land (Bureau of Meteorology, Australian Government Publishing Service, Canberra, 1979).

    Google Scholar 

  28. Stull, R. B. J. atmos. Sci. 30, 1092–1099 (1973).

    Article  ADS  Google Scholar 

  29. Carson, D. J. Q. Jl R. met. Soc. 99, 450–467 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christie, D., Muirhead, K. & Clarke, R. Solitary waves in the lower atmosphere. Nature 293, 46–49 (1981). https://doi.org/10.1038/293046a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293046a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing