Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An ‘internal” signal sequence directs secretion and processing of proinsulin in bacteria

Abstract

Most secreted proteins, both eukaryotic and prokaryotic, contain an amino-terminal extension that is removed some time during transport (see ref. 1 for a review). The signal hypothesis2,3 states that these amino-terminal extensions (presequences or signal sequences) serve to bind the protein to the membrane and then to lead the protein through. We recently constructed a series of plasmids in which parts of the Escherichia coli prepenicillinase signal sequence4 were contiguous with the gene for rat preproinsulin, containing 21 of the 24 codons that code for the preproinsulin signal sequence. When Escherichia coli was transformed with each of these hybrid signal sequence constructions, an insulin antigen was secreted5 and correctly processed to proinsulin6 in every case. One of these constructions fused the first half of the prepenicillinase signal sequence codons to the preproinsulin gene; as insulin antigen was not secreted when the same codons were fused to the DNA coding only for proinsulin and hence lacking the eukaryotic signal sequence, we hypothesized that the eukaryotic signal sequence was sufficient to direct transport in bacteria. We could not, however, eliminate some minor but specific role for the amino terminus donated by the bacterial signal sequence. One way to do this is to replace the prepenicillinase sequences with that of a nonsecreted E. coli protein, for example β-galactosidase. We show here that E. coli harbouring a plasmid encoding a β-galactosidase–preproinsulin fusion protein efficiently secretes insulin antigen and processes the protein to proinsulin despite the fact that the signal sequence is internal to the amino terminus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blobel, G., Walter, P., Chang, C. N., Erickson, A. H. & Lingappa, V. R. Symp. Soc. exp. Biol. 33, 9–36 (1979).

    CAS  PubMed  Google Scholar 

  2. Milstein, C., Brownlee, G. G., Harrison, T. M. & Matthews, M. B. Nature new Biol. 239, 117–120 (1972).

    Article  CAS  PubMed  Google Scholar 

  3. Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 835–851 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Sutcliffe, J. G. Proc. natn. Acad. Sci. USA. 75, 3737–3741 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Talmadge, K., Stahl, S. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 77, 3369–3373 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Talmadge, K., Kaufman, J. & Gilbert, W. Proc. natn. Acad. Sci. U.S.A. 77, 3988–3992 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Weiher, H. thesis, Univ. Heidelberg (1980).

  8. Bolivar, F. et al. Gene 2, 95–113 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Villa-Komaroff, L. et al. Proc. natn. Acad. Sci. U.S.A. 75, 3727–3731 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Lingappa, V. R., Lingappa, J. R. & Blobel, G. Nature 281, 117–121 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bedoulle, H. et al. Nature 284, 78–81 (1980).

    Article  ADS  Google Scholar 

  13. Mandell, M. & Higa, A. J. molec. Biol. 53, 159–162 (1970).

    Article  Google Scholar 

  14. Reiner, A. J. Bact. 97, 1522–1523 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Talmadge, K. & Gilbert, W. Gene 12, 235–241 (1980).

    Article  CAS  PubMed  Google Scholar 

  16. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. Miller, J. H. Experiments in Molecular Genetics, 433 (Cold Spring Harbor Laboratory, New York, 1972).

    Google Scholar 

  18. Roberts, R. B., Abelson, P. A., Cowie, D. B., Bolton, E. T. & Britten, R. J. Studies of Biosynthesis in Escherichia coli 5 (Carnegie Institution of Washington Publ. no. 607, Washington DC, 1957).

    Google Scholar 

  19. Kessler, S. W. J. Immun. 115, 1617–1624 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talmadge, K., Brosius, J. & Gilbert, W. An ‘internal” signal sequence directs secretion and processing of proinsulin in bacteria. Nature 294, 176–178 (1981). https://doi.org/10.1038/294176a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294176a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing