Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oscillatory zoning: a pathological case of crystal growth

Abstract

A new theory of oscillatory zoning in naturally grown plagioclase crystals is presented. This describes explicitly the coupling between the interface kinetics and the diffusion of chemical species in the melt. The crystal growth rate R responds with a finite delay time to concentration changes at the interface. Thus the growth rate cannot be simply some function of the supersaturation. Oscillatory zoning occurs when growth rate is low. This theory accounts for the absence or extreme rareness of oscillatory zoned plagioclase crystals in laboratory growth experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harloff, C. Leid. Geol. Meded. 2, 99–114 (1927).

    Google Scholar 

  2. Hills, E. S. Geol. Mag. 73, 49–56 (1936).

    Article  ADS  CAS  Google Scholar 

  3. Larsen, E. S. & Irving, J. Am. Miner. 23, 227–257 (1938).

    CAS  Google Scholar 

  4. Vance, J. A. Am. J. Sci. 260, 746–760 (1962).

    Article  ADS  CAS  Google Scholar 

  5. Pittman, E. D. J. sedim. Petrol. 33, 380–386 (1963).

    Google Scholar 

  6. Bottinga, Y., Kudo, A. & Weill, D. Am. Miner. 51, 792–806 (1966).

    CAS  Google Scholar 

  7. Sibley, D. F., Vogel, T. A., Walker, B. M. & Byerly, G. Am. J. Sci. 276, 275–281 (1976).

    Article  ADS  Google Scholar 

  8. Homma, F. Schweiz. miner. Petrogr. Mitt. 12, 345–351 (1932).

    Google Scholar 

  9. Leedal, G. P. Q. Jl geol. Soc. Lond. 108, 35–63 (1952).

    Article  CAS  Google Scholar 

  10. Smith, J. V. in The Feldspar Minerals Vol. 2, 206–247 (Springer, Berlin, 1974).

    Google Scholar 

  11. Bollinger, C. & Semet, M. Init. Rep. DSDP Legs 1–3, 1055–1061 (1979).

    Google Scholar 

  12. Bolhnger, C. thesis, Univ. Paris 7 (1979).

  13. Wiebe, R. A. Am. J. Sci. 266, 690–703 (1968).

    Article  ADS  Google Scholar 

  14. Lofgren, G. Am. J. Sci. 274, 243–273 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Lofgren, G. in The Feldspars (eds McKenzie, W. S. & Zussman, J.) 362–375 (Manchester University Press, 1974).

    Google Scholar 

  16. Hopper, R. W. & Uhlmann, D. R. J. Cryst. Growth 21, 203–213 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Loomis, T. P. Contr. Miner. Petrol. 76, 196–205 (1981).

    Article  ADS  Google Scholar 

  18. Tiller, W. A. & Rutter, J. W. Can. J. Phys. 34, 96–121 (1956).

    Article  ADS  Google Scholar 

  19. Cahn, J. W. Acta metall. 8, 554–562 (1960).

    Article  CAS  Google Scholar 

  20. Jackson, K. A., Uhlmann, D. R. & Hunt, J. D. J. Cryst. Growth 1, 1–36 (1967).

    Article  ADS  CAS  Google Scholar 

  21. Haase, C. S., Chadam, J., Feinn, D. & Ortoleva, P. Science 209, 272–274 (1980).

    Article  ADS  CAS  Google Scholar 

  22. Nakamura, Y. Am. Miner. 58, 986–990 (1973).

    CAS  Google Scholar 

  23. Dowty, E. in Physics of Magmatic Processes (ed. Hargraves, R. B.) 419–485 (Princeton University Press, 1980).

    Google Scholar 

  24. Shimizu, N. Earth planet. Sci. Lett. 39, 398–406 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Samoylovich, Y. A. Geochem. Int. 16, 79–84 (1979).

    Google Scholar 

  26. Crank, J. The Mathematics of Diffusion 2nd edn (Oxford University Press, 1975).

    MATH  Google Scholar 

  27. Saxena, S. K. Thermodynamics of Rock-Forming Crystalline Solutions (Springer, Berlin, 1973).

    Book  Google Scholar 

  28. Hofmann, A. W. in Physics of Magmatic Processes (ed Hargraves, R. B.) 385–417 (Princeton University Press, 1980).

    Google Scholar 

  29. Lofgren, G. in Physics of Magmatic Processes (ed. Hargraves, R. B.) 500–518 (Princeton University Press, 1980).

    Google Scholar 

  30. Bottinga, Y. & Weill, D. F. Am. J. Sci. 269, 169–182 (1970).

    Article  ADS  CAS  Google Scholar 

  31. Coriell, S. R. & Parker, R. L. in Crystal Growth (ed. Peiser, H. S.) 703–708 (Pergamon, Oxford, 1967).

    Google Scholar 

  32. O'Hara, S., Tarshis, L. A., Tiller, W. A. & Hunt, J. P. J. Cryst. Growth 3, 555–561 (1968).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allègre, C., Provost, A. & Jaupart, C. Oscillatory zoning: a pathological case of crystal growth. Nature 294, 223–228 (1981). https://doi.org/10.1038/294223a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294223a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing