Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Action of glutamate and aspartate analogues on rod horizontal and bipolar cells

Abstract

Electrophysiological evidence indicates that transmitter release from retinal rod terminals occurs at a high rate in the dark and is reduced by light1–6. The rod transmitter closes ionic channels (mainly sodium channels) in the subsynaptic membrane of a class of bipolar cells (on-centre bipolar cells) which depolarize in response to light4,7–9. However, the transmitter opens sodium channels in the subsynaptic membrane of horizontal cells4–6,9,10. We report here that several compounds, chemically related to the amino acids aspartate and glutamate, have similar post-synaptic actions to that of the rod neurotransmitter. Kainic acid11, in micromolar concentration, hyperpolarizes rod on-centre bipolar cells, increasing their membrane resistance while depolarizing rod horizontal cells. Experiments with 2-amino-4-phosphonobutyric acid (APB), in which a phosphono group is substituted for a carboxyl group of glutamic acid, have further distinguished between different binding sites on the cells which make synaptic contact with rods. APB is an agonist at the on-centre bipolar cells, closing the same ionic channels as the rod neurotransmitter, but is without effect on rod horizontal cells. The evidence presented here suggest that the widely held view that glutamate or aspartate is the rod neurotransmitter needs to be re-examined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Del Castillo, J. & Katz, B. J. Physiol., Lond. 124, 586–604 (1954).

    Article  CAS  Google Scholar 

  2. Byzov, A. L. & Trifonov, J. A. Vision Res. 8, 817–822 (1968).

    Article  CAS  Google Scholar 

  3. Toyoda, J., Hashimoto, H., Anno, H. & Tomita, T. Vision Res. 10, 1093–1100 (1970).

    Article  CAS  Google Scholar 

  4. Kaneko, A. Vision Res. Suppl. 3, 17–26 (1971).

  5. Falk, G. & Fatt, P. in Handbook of Sensory Physiology 7, 1 (ed. Dartnall, H. J. A.) 200–244 (Springer, Heidelberg, 1972).

    Google Scholar 

  6. Dowling, J. E. & Ripps, H. Nature 242, 101–103 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Toyoda, J. Vision Res. 13, 283–294 (1973).

    Article  CAS  Google Scholar 

  8. Saito, T., Kondo, H. & Toyoda, J. Vision Res. 18, 591–595 (1978).

    Article  CAS  Google Scholar 

  9. Ashmore, J. F. & Falk, G. J. Physiol., Lond. 300, 115–150 (1980).

    Article  CAS  Google Scholar 

  10. Trifonov, Y. A., Byzov, A. L. & Chailahian, L. M. Vision Res. 14, 229–241 (1974).

    Article  Google Scholar 

  11. McGeer, E. G., Olney, J. W. & McGeer, P. L. (eds) Kainic Acid as a Tool in Neurobiology (Raven, New York, 1978).

    Google Scholar 

  12. Falk, G. & Fatt, P. Vision Res. 14, 739–741 (1974).

    Article  CAS  Google Scholar 

  13. Cull-Candy, S. G., Donnellan, J. F., James, R. W. & Lunt, G. G. Nature 262, 408–409 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Dudel, J. Pflügers Arch. ges Physiol. 369, 7–16 (1977).

    Article  CAS  Google Scholar 

  15. Takeuchi, A., Onodera, K. & Kawagoe, R. Proc. Jap. Acad. B56, 246–249 (1980).

    Article  CAS  Google Scholar 

  16. Gerschenfeld, H. M. Physiol. Rev. 53, 1–119 (1973).

    Article  CAS  Google Scholar 

  17. Davies, J., Francis, A. A., Jones, A. W. & Watkins, J. C. Neurosci. Lett. 21, 77–81 (1981).

    Article  CAS  Google Scholar 

  18. Biscoe, T. J. et al. Nature 270, 743–745 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Hall, J. G., Hicks, T. P., McLennan, H., Richardson, T. L. & Wheal, H. V. J. Physiol., Lond. 286, 29–39 (1979).

    Article  CAS  Google Scholar 

  20. Hicks, T. P., Guedes, R.C.A. & Creutzfeldt, O. D. Brain Res. 208, 456–462 (1981).

    Article  CAS  Google Scholar 

  21. Wu, S. M. & Dowling, J. E. Proc. natn. Acad. Sci. U.S.A. 75, 5205–5209 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Simon, J. R., Contrera, J. F. & Kuhar, M. J. J. Neurochem. 26, 141–147 (1976).

    CAS  PubMed  Google Scholar 

  23. Walker, R. J. Comp. Biochem. Physiol. 55 c, 61–67 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Hall, J. G., Hicks, T. P. & McLennan, H. Neurosci. Lett. 8, 171–175 (1978).

    Article  CAS  Google Scholar 

  25. Slaughter, M. M. & Miller, R. F. Science 211, 182–185 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiells, R., Falk, G. & Naghshineh, S. Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature 294, 592–594 (1981). https://doi.org/10.1038/294592a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294592a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing