Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning

Abstract

Small RNAs have several important biological functions1. MicroRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) regulate mRNA stability and translation, and siRNAs cause post-transcriptional gene silencing of transposons, viruses and transgenes and are important in both the establishment and maintenance of cytosine DNA methylation2. Here, we study the role of the four Arabidopsis thaliana DICER-LIKE genes (DCL1DCL4) in these processes. Sequencing of small RNAs from a dcl2 dcl3 dcl4 triple mutant showed markedly reduced tasiRNA and siRNA production and indicated that DCL1, in addition to its role as the major enzyme for processing miRNAs, has a previously unknown role in the production of small RNAs from endogenous inverted repeats. DCL2, DCL3 and DCL4 showed functional redundancy in siRNA and tasiRNA production and in the establishment and maintenance of DNA methylation. Our studies also suggest that asymmetric DNA methylation can be maintained by pathways that do not require siRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Arabidopsis thaliana dcl mutant backgrounds.
Figure 2: Accumulation of miRNAs and trans-acting siRNAs in dcl2 dcl3 dcl4.
Figure 3: siRNA accumulation in dcl mutants.
Figure 4: FWA silencing in dcl mutant backgrounds.
Figure 5: Maintenance of cytosine methylation in dcl mutants.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  Google Scholar 

  2. Chan, S.W., Henderson, I.R. & Jacobsen, S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 6, 351–360 (2005).

    Article  CAS  Google Scholar 

  3. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  Google Scholar 

  4. Xie, Z., Allen, E., Wilken, A. & Carrington, J.C. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102, 12984–12989 (2005).

    Article  CAS  Google Scholar 

  5. Yoshikawa, M., Peragine, A., Park, M.Y. & Poethig, R.S. A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev. 19, 2164–2175 (2005).

    Article  CAS  Google Scholar 

  6. Gasciolli, V., Mallory, A.C., Bartel, D.P. & Vaucheret, H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15, 1494–1500 (2005).

    Article  CAS  Google Scholar 

  7. Dunoyer, P., Himber, C. & Voinnet, O. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat. Genet. 37, 1356–1360 (2005).

    Article  CAS  Google Scholar 

  8. Schauer, S.E., Jacobsen, S.E., Meinke, D.W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    Article  CAS  Google Scholar 

  9. Hamilton, A., Voinnet, O., Chappell, L. & Baulcombe, D. Two classes of short interfering RNA in RNA silencing. EMBO J. 17, 4671–4679 (2002).

    Article  Google Scholar 

  10. Qi, Y., Denli, A.M. & Hannon, G.J. Biochemical specialization within Arabidopsis RNA silencing pathways. Mol. Cell 19, 421–428 (2005).

    Article  CAS  Google Scholar 

  11. Liu, B. et al. Loss of function of OsDCL1 affects microRNA accumulation and causes developmental defects in rice. Plant Physiol. 139, 296–305 (2005).

    Article  CAS  Google Scholar 

  12. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  Google Scholar 

  13. Allen, E., Xie, Z., Gustafson, A.M. & Carrington, J.C. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221 (2005).

    Article  CAS  Google Scholar 

  14. Allen, E. et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat. Genet. 36, 1282–1290 (2004).

    Article  CAS  Google Scholar 

  15. Cam, H.P. et al. Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fission yeast genome. Nat. Genet. 37, 809–819 (2005).

    Article  CAS  Google Scholar 

  16. Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol. 15, 1501–1507 (2005).

    Article  CAS  Google Scholar 

  17. Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935 (2005).

    Article  CAS  Google Scholar 

  18. Shen, B. & Goodman, H.M. Uridine addition after microRNA-directed cleavage. Science 306, 997 (2004).

    Article  CAS  Google Scholar 

  19. Cao, X. & Jacobsen, S.E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing. Curr. Biol. 12, 1138–1144 (2002).

    Article  CAS  Google Scholar 

  20. Chan, S.W. et al. RNA silencing genes control de novo DNA methylation. Science 303, 1336 (2004).

    Article  CAS  Google Scholar 

  21. Soppe, W.J. et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 6, 791–802 (2000).

    Article  CAS  Google Scholar 

  22. Jacobsen, S.E., Sakai, H., Finnegan, E.J., Cao, X. & Meyerowitz, E.M. Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr. Biol. 10, 179–186 (2000).

    Article  CAS  Google Scholar 

  23. Jackson, J.P., Lindroth, A.M., Cao, X. & Jacobsen, S.E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  CAS  Google Scholar 

  24. Malagnac, F., Bartee, L. & Bender, J. An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J. 21, 6842–6852 (2002).

    Article  CAS  Google Scholar 

  25. Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569 (2005).

    Article  CAS  Google Scholar 

  26. Yoder, J.A., Soman, N.S., Verdine, G.L. & Bestor, T.H. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J. Mol. Biol. 270, 385–395 (1997).

    Article  CAS  Google Scholar 

  27. Pradhan, S., Bacolla, A., Wells, R.D. & Roberts, R.J. Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 274, 33002–33010 (1999).

    Article  CAS  Google Scholar 

  28. Zilberman, D. et al. Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr. Biol. 14, 1214–1220 (2004).

    Article  CAS  Google Scholar 

  29. Valoczi, A. et al. Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Chan for the dcl2 dcl3 double mutant, J. Carrington for drawing our attention to the IR-71 locus and members of the Jacobsen laboratory for critical reading of the manuscript. I.R.H. was supported by a European Molecular Biology Organization (EMBO) Long Term Postdoctoral Fellowship. S.E.J. is an investigator of the Howard Hughes Medical Institute. This work was supported by US National Science Foundation grants 0439186 and 0548569 to P.J.G. and B.C.M., and NIH grant GM60398 and funds from the Howard Hughes Medical Institute to S.E.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven E Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Repeat structure and siRNA accumulation at the large inverted repeat IR-71. (PDF 272 kb)

Supplementary Fig. 2

Distribution of methylation at repeat loci. (PDF 200 kb)

Supplementary Table 1

Composition of small RNAs sequenced from wild-type Columbia (Col) and the dcl2-1 dcl3-1 dcl4-2 triple mutant. (PDF 55 kb)

Supplementary Table 2

Sodium bisulfite sequencing analysis of repeat loci. (PDF 44 kb)

Supplementary Table 3

Adaptor, primer and probe sequences. (PDF 43 kb)

Supplementary Table 4

Small RNA sequences cloned from Columbia that show a perfect match to the Arabidopsis genome. (PDF 417 kb)

Supplementary Table 5

Small RNA sequences cloned from dcl2 dcl3 dcl4 that show a perfect match to the Arabidopsis genome. (PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henderson, I., Zhang, X., Lu, C. et al. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38, 721–725 (2006). https://doi.org/10.1038/ng1804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing