Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase

Abstract

Porphobilinogen synthase (PBGS) catalyzes the first common step in the biosynthesis of tetrapyrroles (such as heme and chlorophyll). Although the predominant oligomeric form of this enzyme, as inferred from many crystal structures, is that of a homo-octamer, a rare human PBGS allele, F12L, reveals the presence of a hexameric form. Rearrangement of an N-terminal arm is responsible for this oligomeric switch, which results in profound changes in kinetic behavior. The structural transition between octamer and hexamer must proceed through an unparalleled equilibrium containing two different dimer structures. The allosteric magnesium, present in most PBGS, has a binding site in the octamer but not in the hexamer. The unprecedented structural rearrangement reported here relates to the allosteric regulation of PBGS and suggests that alternative PBGS oligomers may function in a magnesium-dependent regulation of tetrapyrrole biosynthesis in plants and some bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of wild-type human PBGS relative to the F12L variant.
Figure 2: Comparison of newly determined structure of the hexameric human PBGS variant F12L (PDB entry 1PV8) with that of the human PBGS octamer (PDB entry 1E51).
Figure 3: Characteristics of coexpressed WT+F12L.
Figure 4: The allosteric magnesium-binding site of PBGS is not present in the hexamer.
Figure 5: A proposal for the physiologically relevant interconversion of hexameric and octameric PBGS in many species whose PBGS contain the binding determinants for the allosteric magnesium.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Battersby, A.R. Tetrapyrroles: the pigments of life. Nat. Prod. Rep. 17, 507–526 (2000).

    Article  CAS  Google Scholar 

  2. Jaffe, E.K. The porphobilinogen synthase family of metalloenzymes. Acta Crystallogr. D 56, 115–128 (2000).

    Article  CAS  Google Scholar 

  3. Akagi, R., Yasui, Y., Harper, P. & Sassa, S. A novel mutation of delta-aminolaevulinate dehydratase in a healthy child with 12% erythrocyte enzyme activity. Br. J. Haematol. 106, 931–937 (1999).

    Article  CAS  Google Scholar 

  4. Schulze, A., Frommhold, D., Hoffman, G.F. & Mayatepek, E. Spectrophotometric microassay for delta-aminolevlinate dehydratase in dried-blood spots as confirmation for hereditary tyrosinemia type I. Clin. Chem. 47, 1424–1429 (2001).

    CAS  PubMed  Google Scholar 

  5. Maruno, M. et al. Highly heterogeneous nature of delta-aminolevulinate dehydratase (ALAD) deficiencies in ALAD porphyria. Blood 97, 2972–2978 (2001).

    Article  CAS  Google Scholar 

  6. Jaffe, E.K., Martins, J., Li, J., Kervinen, J. & Dunbrack, R.L. Jr. The molecular mechanism of lead inhibition of human porphobilinogen synthase. J. Biol. Chem. 276, 1531–1537 (2001).

    Article  CAS  Google Scholar 

  7. Jaffe, E.K. et al. An artificial gene for human porphobilinogen synthase allows comparison of an allelic variation implicated in susceptibility to lead poisoning. J. Biol. Chem. 275, 2619–2626 (2000).

    Article  CAS  Google Scholar 

  8. Jaffe, E.K. et al. Characterization of the role of the stimulatory magnesium of Escherichia coli porphobilinogen synthase. Biochemistry 34, 244–251 (1995).

    Article  CAS  Google Scholar 

  9. Petrovich, R.M., Litwin, S. & Jaffe, E.K. Bradyrhizobium japonicum porphobilinogen synthase uses two Mg(II) and monovalent cations. J. Biol. Chem. 271, 8692–8699 (1996).

    Article  CAS  Google Scholar 

  10. Frankenberg, N., Jahn, D. & Jaffe, E.K. Pseudomonas aeruginosa contains a novel type V porphobilinogen synthase with no required catalytic metal ions. Biochemistry 38, 13976–13982 (1999).

    Article  CAS  Google Scholar 

  11. Erskine, P.T. et al. X-ray structure of 5-aminolaevulinate dehydratase, a hybrid aldolase. Nat. Struct. Biol. 4, 1025–1031 (1997).

    Article  CAS  Google Scholar 

  12. Erskine, P.T. et al. X-ray structure of 5-aminolevulinic acid dehydratase from Escherichia coli complexed with the inhibitor levulinic acid at 2.0 Å resolution. Biochemistry 38, 4266–4276 (1999).

    Article  CAS  Google Scholar 

  13. Erskine, P.T. et al. The Schiff base complex of yeast 5-aminolaevulinic acid dehydratase with laevulinic acid. Protein Sci. 8, 1250–1256 (1999).

    Article  CAS  Google Scholar 

  14. Frankenberg, N. et al. High resolution crystal structure of a Mg2+-dependent porphobilinogen synthase. J. Mol. Biol. 289, 591–602 (1999).

    Article  CAS  Google Scholar 

  15. Erskine, P.T. et al. MAD analyses of yeast 5-aminolaevulinate dehydratase: their use in structure determination and in defining the metal-binding sites. Acta Crystallogr. D 56, 421–430 (2000).

    Article  CAS  Google Scholar 

  16. Kervinen, J. et al. Mechanistic basis for suicide inactivation of porphobilinogen synthase by 4,7-dioxosebacic acid, an inhibitor that shows dramatic species selectivity. Biochemistry 40, 8227–8236 (2001).

    Article  CAS  Google Scholar 

  17. Erskine, P.T. et al. The X-ray structure of yeast 5-aminolaevulinic acid dehydratase complexed with two diacid inhibitors. FEBS Lett. 503, 196–200 (2001).

    Article  CAS  Google Scholar 

  18. Erskine, P.T. et al. The X-ray structure of yeast 5-aminolaevulinic acid dehydratase complexed with substrate and three inhibitors. J. Mol. Biol. 312, 133–141 (2001).

    Article  CAS  Google Scholar 

  19. Jaffe, E.K. et al. Species-specific inhibition of porphobilinogen synthase by 4-oxosebacic acid. J. Biol. Chem. 277, 19792–19799 (2002).

    Article  CAS  Google Scholar 

  20. Frere, F. et al. Structure of porphobilinogen synthase from Pseudomonas aeruginosa in complex with 5-fluorolevulinic acid suggests a double Schiff base mechanism. J. Mol. Biol. 320, 327–247 (2002).

    Article  Google Scholar 

  21. Murzin, A.G., Brenner, S.E., Hubbard, T. & Chothia, C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995).

    CAS  PubMed  Google Scholar 

  22. Kervinen, J. et al. Porphobilinogen synthase from pea: expression from an artificial gene, kinetic characterization, and novel implications for subunit interactions. Biochemistry 39, 9018–9029 (2000).

    Article  CAS  Google Scholar 

  23. Segel, I.H. Enzyme Kinetics 64–71 (Wiley, New York,1975).

    Google Scholar 

  24. Jaffe, E.K. An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem. Biol. 10, 25–34 (2003).

    Article  CAS  Google Scholar 

  25. Frankenberg, N., Heinz, D.W. & Jahn, D. Production, purification, and characterization of a Mg2+-responsive porphobilinogen synthase from Psuedomonas aeruginosa. Biochemistry 38, 13968–13975 (1999).

    Article  CAS  Google Scholar 

  26. Schneider, H.A. Enzymic capacities for chlorophyll biosynthesis. Activation and de novo synthesis of enzymes. Z. Naturforsch. 31, 55–63 (1976).

    Article  CAS  Google Scholar 

  27. Papenbrock, J., Mock, H.P., Tanaka, R., Kruse, E. & Grimm, B. Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol. 122, 1161–1169 (2000).

    Article  CAS  Google Scholar 

  28. Papenbrock, J. & Grimm, B. Regulatory network of tetrapyrrole biosynthesis—studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 213, 667–681 (2001).

    Article  CAS  Google Scholar 

  29. Walker, D.A. Regulatory mechanisms in photosynthetic carbon metabolism. Curr. Top. Cell Regul. 11, 203–241 (1976).

    Article  CAS  Google Scholar 

  30. Stolz, M. & Dornemann, D. Purification, metal cofactor, N-terminal sequence and subunit composition of a 5-aminolevulinic acid dehydratase from the unicellular green alga Scenedesmus obliquus, mutant C-2A′. Eur. J. Biochem. 236, 600–608 (1996).

    Article  CAS  Google Scholar 

  31. Tamai, H., Shioi, Y. & Sasa, T. Purification and characterization of δ-aminolevulinic acid dehydratase from Chlorella regularis. Plant Cell Physiol. 20, 435–444 (1979).

    Article  CAS  Google Scholar 

  32. Wu, J.W. et al. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-β signaling. Mol. Cell 8,1277–1289 (2001).

    Article  CAS  Google Scholar 

  33. Laue, T., Shaw, B.D., Ridgeway, T.M. & Pelletier, S.L. in Analytical Ultracentrifugation in Biochemistry and Polymer Science (eds. Harding, S.E., Rowe, A. & Horton, J.C.) 90–125 (Royal Society of Chemistry, Cambridge, UK, 1992).

    Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  35. Navaza, J. An automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  36. Jones, T.A., Zou, J.Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Tannir (Fox Chase Cancer Center (FCCC)), S. Seeholzer (FCCC), T. Guszczynski (US National Cancer Institute (NCI)) and T. Copland (NCI) for technical support. The FCCC DNA synthesis facility, DNA sequencing facility and Research Secretarial Services were used in the preparation of this manuscript. This work was supported by the US National Institute of Environmental Health Sciences, the NCI, and by an appropriation from the Commonwealth of Pennsylvania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen K Jaffe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breinig, S., Kervinen, J., Stith, L. et al. Control of tetrapyrrole biosynthesis by alternate quaternary forms of porphobilinogen synthase. Nat Struct Mol Biol 10, 757–763 (2003). https://doi.org/10.1038/nsb963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing