Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and molecular organization of mammalian fatty acid synthase

Abstract

De novo synthesis of fatty acids in the cytosol of animal cells is carried out by the multifunctional, homodimeric fatty acid synthase (FAS). Cryo-EM analysis of single FAS particles imaged under conditions that limit conformational variability, combined with gold labeling of the N termini and structural analysis of the FAS monomers, reveals two coiled monomers in an overlapping arrangement. Comparison of dimeric FAS structures related to different steps in the fatty acid synthesis process indicates that only limited local rearrangements are required for catalytic interaction among different functional domains. Monomer coiling probably contributes to FAS efficiency and provides a structural explanation for the reported activity of a FAS monomer dimerized to a catalytically inactive partner. The new FAS structure provides a new paradigm for understanding the architecture of FAS and the related modular polyketide synthases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two models for organization of FAS.
Figure 2: Structure and conformational variability of FAS in projection.
Figure 3: Structure of FAS mutants in the presence of substrates.
Figure 4: Three-dimensional structure of FAS.
Figure 5: Structures of FAS monomer and DBP crosslinked FAS monomer, and a possible correlation to the structure of the FAS dimer.
Figure 6: Localization of the FAS N termini by labeling with a gold cluster.

Similar content being viewed by others

References

  1. Alberts, A.W., Strauss, A.W., Hennessy, S. & Vagelos, P.R. Regulation of synthesis of hepatic fatty acid synthetase: binding of fatty acid synthetase antibodies to polysomes. Proc. Natl. Acad. Sci. USA 72, 3956–3960 (1975).

    Article  CAS  Google Scholar 

  2. Stoops, J.K. et al. Presence of two polypeptide chains comprising fatty acid synthetase. Proc. Natl. Acad. Sci. USA 72, 1940–1944 (1975).

    Article  CAS  Google Scholar 

  3. Smith, S., Agradi, E., Libertini, L. & Dileepan, K.N. Specific release of the thioesterase component of the fatty acid synthetase multienzyme complex by limited trypsinization. Proc. Natl. Acad. Sci. USA 73, 1184–1188 (1976).

    Article  CAS  Google Scholar 

  4. Wakil, S.J. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28, 4523–4530 (1989).

    Article  CAS  Google Scholar 

  5. Smith, S., Witkowski, A. & Joshi, A.K. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res. 42, 289–317 (2003).

    Article  CAS  Google Scholar 

  6. Chirala, S.S. et al. Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc. Natl. Acad. Sci. USA 100, 6358–6363 (2003).

    Article  CAS  Google Scholar 

  7. Rufo, C. et al. Involvement of a unique carbohydrate-responsive factor in the glucose regulation of rat liver fatty-acid synthase gene transcription. J. Biol. Chem. 276, 21969–21975 (2001).

    Article  CAS  Google Scholar 

  8. Loftus, T.M. et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288, 2379–2381 (2000).

    Article  CAS  Google Scholar 

  9. Furuya, Y., Akimoto, S., Yasuda, K. & Ito, H. Apoptosis of androgen-independent prostate cell line induced by inhibition of fatty acid synthesis. Anticancer Res. 17, 4589–4593 (1997).

    CAS  PubMed  Google Scholar 

  10. Kuhajda, F.P. et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc. Natl. Acad. Sci. USA 97, 3450–3454 (2000).

    Article  CAS  Google Scholar 

  11. De Schrijver, E., Brusselmans, K., Heyns, W., Verhoeven, G. & Swinnen, J.V. RNA interference-mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells. Cancer Res. 63, 3799–3804 (2003).

    CAS  PubMed  Google Scholar 

  12. Chirala, S.S., Jayakumar, A., Gu, Z.W. & Wakil, S.J. Human fatty acid synthase: role of interdomain in the formation of catalytically active synthase dimer. Proc. Natl. Acad. Sci. USA 98, 3104–3108 (2001).

    Article  CAS  Google Scholar 

  13. Smith, S. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8, 1248–1259 (1994).

    Article  CAS  Google Scholar 

  14. Stoops, J.K. & Wakil, S.J. Animal fatty acid synthetase. A novel arrangement of the β-ketoacyl synthetase sites comprising domains of the two subunits. J. Biol. Chem. 256, 5128–5133 (1981).

    CAS  PubMed  Google Scholar 

  15. Stoops, J.K. & Wakil, S.J. Animal fatty acid synthetase. Identification of the residues comprising the novel arrangement of the β-ketoacyl synthetase site and their role in its cold inactivation. J. Biol. Chem. 257, 3230–3235 (1982).

    CAS  PubMed  Google Scholar 

  16. Joshi, A.K., Rangan, V.S. & Smith, S. Differential affinity labeling of the two subunits of the homodimeric animal fatty acid synthase allows isolation of heterodimers consisting of subunits that have been independently modified. J. Biol. Chem. 273, 4937–4943 (1998).

    Article  CAS  Google Scholar 

  17. Rangan, V.S., Joshi, A.K. & Smith, S. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro. Biochemistry 40, 10792–10799 (2001).

    Article  CAS  Google Scholar 

  18. Witkowski, A. et al. Dibromopropanone cross-linking of the phosphopantetheine and active-site cysteine thiols of the animal fatty acid synthase can occur both inter- and intrasubunit. Reevaluation of the side-by-side, antiparallel subunit model. J. Biol. Chem. 274, 11557–11563 (1999).

    Article  CAS  Google Scholar 

  19. Joshi, A.K., Rangan, V.S., Witkowski, A. & Smith, S. Engineering of an active animal fatty acid synthase dimer with only one competent subunit. Chem. Biol. 10, 169–173 (2003).

    Article  CAS  Google Scholar 

  20. Kitamoto, T., Nishigai, M., Sasaki, T. & Ikai, A. Structure of fatty acid synthetase from the Harderian gland of guinea pig. Proteolytic dissection and electron microscopic studies. J. Mol. Biol. 203, 183–195 (1988).

    Article  CAS  Google Scholar 

  21. Brink, J. et al. Quaternary structure of human fatty acid synthase by electron cryomicroscopy. Proc. Natl. Acad. Sci. USA 99, 138–143 (2002).

    Article  CAS  Google Scholar 

  22. Wakil, S.J., Stoops, J.K. & Joshi, V.C. Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 52, 537–579 (1983).

    Article  CAS  Google Scholar 

  23. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies 342 (Academic Press, San Diego, 1996).

  24. Brink, J. et al. Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis. Structure 12, 185–191 (2004).

    Article  CAS  Google Scholar 

  25. Radermacher, M. The three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron Microsc. Tech. 9, 359–394 (1988).

    Article  CAS  Google Scholar 

  26. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  CAS  Google Scholar 

  27. Penczek, P., Grassucci, R.A. & Frank, J. The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53, 251–270 (1994).

    Article  CAS  Google Scholar 

  28. Smith, S. & Abraham, S. Fatty acid synthetase from lactating rat mammary gland. 3. Dissociation and reassociation. J. Biol. Chem. 246, 6428–6435 (1971).

    CAS  PubMed  Google Scholar 

  29. Montesano-Roditis, L., Glitz, D.G., Traut, R.R. & Stewart, P.L. Cryo-electron microscopic localization of protein L7/L12 within the Escherichia coli 70 S ribosome by difference mapping and Nanogold labeling. J. Biol. Chem. 276, 14117–14123 (2001).

    Article  CAS  Google Scholar 

  30. Buchel, C., Morris, E., Orlova, E. & Barber, J. Localisation of the PsbH subunit in photosystem II: a new approach using labelling of His-tags with a Ni(2+)-NTA gold cluster and single particle analysis. J. Mol. Biol. 312, 371–379 (2001).

    Article  CAS  Google Scholar 

  31. Witkowski, A., Joshi, A., Witkowska, H.E., Asturias, F.J. & Smith, S. Head-to-head coiled arrangement of the subunits of the animal fatty acid synthase. Chem. Biol. 11, 1667–1676 (2004).

    Article  CAS  Google Scholar 

  32. Yuan, Z.Y. & Hammes, G.G. Fluorescence studies of chicken liver fatty acid synthase. Segmental flexibility and distance measurements. J. Biol. Chem. 261, 13643–13651 (1986).

    CAS  PubMed  Google Scholar 

  33. Muesing, R.A., Lornitzo, F.A., Kumar, S. & Porter, J.W. Factors affecting the reassociation and reactivation of the half-molecular weight nonidentical subunits of pigeon liver fatty acid synthetase. J. Biol. Chem. 250, 1814–1823 (1975).

    CAS  PubMed  Google Scholar 

  34. Khosla, C. Harnessing the biosynthetic potential of modular polyketide synthases. Chem. Rev. 97, 2577–2590 (1997).

    Article  CAS  Google Scholar 

  35. Staunton, J. & Weissman, K.J. Polyketide biosynthesis: a millennium review. Nat. Prod. Rep. 18, 380–416 (2001).

    Article  CAS  Google Scholar 

  36. Staunton, J. et al. Evidence for a double-helical structure for modular polyketide synthases. Nat. Struct. Biol. 3, 188–192 (1996).

    Article  CAS  Google Scholar 

  37. Joshi, A.K. & Smith, S. Construction of a cDNA encoding the multifunctional animal fatty acid synthase and expression in Spodoptera frugiperda cells using baculoviral vectors. Biochem. J. 296, 143–149 (1993).

    Article  CAS  Google Scholar 

  38. Joshi, A.K. & Smith, S. Construction, expression, and characterization of a mutated animal fatty acid synthase deficient in the dehydrase function. J. Biol. Chem. 268, 22508–22513 (1993).

    CAS  PubMed  Google Scholar 

  39. Witkowski, A., Joshi, A. & Smith, S. Fatty acid synthase: in vitro complementation of inactive mutants. Biochemistry 35, 10569–10575 (1996).

    Article  CAS  Google Scholar 

  40. Joshi, A.K., Witkowski, A. & Smith, S. Mapping of functional interactions between domains of the animal fatty acid synthase by mutant complementation in vitro. Biochemistry 36, 2316–2322 (1997).

    Article  CAS  Google Scholar 

  41. Tischendorf, G.W., Zeichhardt, H. & Stoffler, G. Determination of the location of proteins L14, L17, L18, L19, L22, L23 on the surface of the 5oS ribosomal subunit of Escherichia coli by immune electron microscopy. Mol. Gen. Genet. 134, 187–208 (1974).

    Article  CAS  Google Scholar 

  42. Stoffler, G. & Stoffler-Meilicke, M. The ultrastructure of macromolecular complexes studied with antibodies. In Modern Methods in Protein Chemistry (ed. Tesche, H.) 409–455 (De Gruyter, Berlin, 1983).

    Google Scholar 

  43. Frank, J. et al. SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  44. Witkowski, A., Joshi, A.K., Lindqvist, Y. & Smith, S. Conversion of a β-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry 38, 11643–11650 (1999).

    Article  CAS  Google Scholar 

  45. Witkowski, A., Joshi, A.K. & Smith, S. Characterization of the β-carbon processing reactions of the mammalian cytosolic fatty acid synthase: role of the central core. Biochemistry 43, 10458–10466 (2004).

    Article  CAS  Google Scholar 

  46. Witkowski, A., Joshi, A.K. & Smith, S. Mechanism of the β-ketoacyl synthase reaction catalyzed by the animal fatty acid synthase. Biochemistry 41, 10877–10887 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.J.A. is a scholar of the Leukemia and Lymphoma Society of America. Work in the laboratory of S.S. is supported by US National Institutes of Health grant DK16073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J Asturias.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Raw images of FAS particles. (PDF 715 kb)

Supplementary Fig. 2

Characteristics of final ice-FAS reconstruction from unstained specimens. (PDF 96 kb)

Supplementary Methods (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asturias, F., Chadick, J., Cheung, I. et al. Structure and molecular organization of mammalian fatty acid synthase. Nat Struct Mol Biol 12, 225–232 (2005). https://doi.org/10.1038/nsmb899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing