Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant

Abstract

Conotoxins (Ctx) form a large family of peptide toxins from cone snail venoms that act on a broad spectrum of ion channels and receptors. The subgroup α-Ctx specifically and selectively binds to subtypes of nicotinic acetylcholine receptors (nAChRs), which are targets for treatment of several neurological disorders. Here we present the structure at a resolution of 2.4 Å of α-Ctx PnIA (A10L D14K), a potent blocker of the α7-nAChR, bound with high affinity to acetylcholine binding protein (AChBP), the prototype for the ligand-binding domains of the nAChR superfamily. α-Ctx is buried deep within the ligand-binding site and interacts with residues on both faces of adjacent subunits. The toxin itself does not change conformation, but displaces the C loop of AChBP and induces a rigid-body subunit movement. Knowledge of these contacts could facilitate the rational design of drug leads using the Ctx framework and may lead to compounds with increased receptor subtype selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of α-Ctx on ACh-induced currents on α7-nAChR.
Figure 2: Crystal structure of α-conotoxin binding to Ac-AChBP.
Figure 3: Details of α-conotoxin interaction with Ac-AChBP.
Figure 4: Conformational changes in AChBP upon toxin binding.
Figure 5: Models of α-conotoxin binding to other ligand-binding domains.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. Terlau, H. & Olivera, B.M. Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol. Rev. 84, 41–68 (2004).

    Article  CAS  Google Scholar 

  2. Lewis, R.J. & Garcia, M.L. Therapeutic potential of venom peptides. Nat. Rev. Drug Discov. 2, 790–802 (2003).

    Article  CAS  Google Scholar 

  3. McIntosh, J.M., Santos, A.D. & Olivera, B.M. Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu. Rev. Biochem. 68, 59–88 (1999).

    Article  CAS  Google Scholar 

  4. Olivera, B.M., Cruz, L.J. & Yoshikami, D. Effects of conus peptides on the behavior of mice. Curr. Opin. Neurobiol. 9, 772–777 (1999).

    Article  CAS  Google Scholar 

  5. Miljanich, G.P. Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr. Med. Chem. 11, 3029–3040 (2004).

    Article  CAS  Google Scholar 

  6. Tsetlin, V.I. & Hucho, F. Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS Lett. 557, 9–13 (2004).

    Article  CAS  Google Scholar 

  7. Le Novere, N., Corringer, P.J. & Changeux, J.P. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J. Neurobiol. 53, 447–456 (2002).

    Article  CAS  Google Scholar 

  8. Karlin, A. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102–114 (2002).

    Article  CAS  Google Scholar 

  9. Smit, A.B. et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411, 261–268 (2001).

    Article  CAS  Google Scholar 

  10. Sine, S.M., Wang, H.L. & Bren, N. Lysine scanning mutagenesis delineates structural model of the nicotinic receptor ligand binding domain. J. Biol. Chem. 13, 29210–29223 (2002).

    Article  Google Scholar 

  11. Sine, S.M. The nicotinic receptor ligand binding domain. J. Neurobiol. 53, 431–446 (2002).

    Article  CAS  Google Scholar 

  12. Celie, P.H. et al. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron 41, 907–914 (2004).

    Article  CAS  Google Scholar 

  13. Gao, F. et al. Curariform antagonists bind in different orientations to acetylcholine-binding protein. J. Biol. Chem. 278, 23020–23026 (2003).

    Article  CAS  Google Scholar 

  14. Hansen, S.B., Talley, T.T., Radic, Z. & Taylor, P. Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica. J. Biol. Chem. 279, 24197–24202 (2004).

    Article  CAS  Google Scholar 

  15. Bouzat, C. et al. Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 430, 896–900 (2004).

    Article  CAS  Google Scholar 

  16. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269–276 (2001).

    Article  CAS  Google Scholar 

  17. Cromer, B.A., Morton, C.J. & Parker, M.W. Anxiety over GABA(A) receptor structure relieved by AChBP. Trends Biochem. Sci. 27, 280–287 (2002).

    Article  CAS  Google Scholar 

  18. Trudell, J. Unique assignment of inter-subunit association in GABA(A) α1 β3 γ2 receptors determined by molecular modeling. Biochim. Biophys. Acta 1565, 91–96 (2002).

    Article  CAS  Google Scholar 

  19. Laube, B., Maksay, G., Schemm, R. & Betz, H. Modulation of glycine receptor function: a novel approach for therapeutic intervention at inhibitory synapses? Trends Pharmacol. Sci. 23, 519–527 (2002).

    Article  CAS  Google Scholar 

  20. Reeves, D.C. & Lummis, S.C. The molecular basis of the structure and function of the 5–HT3 receptor: a model ligand-gated ion channel (review). Mol. Membr. Biol. 19, 11–26 (2002).

    Article  CAS  Google Scholar 

  21. O'Mara, M.L., Cromer, B., Parker, M.W. & Chung, S.H. Homology model of the GABA-A receptor examined using Brownian dynamics. Biophys. J. 88, 3286–3299 (2005).

    Article  CAS  Google Scholar 

  22. Luo, S. et al. Single-residue alteration in α-conotoxin PnIA switches its nAChR subtype selectivity. Biochemistry 38, 14542–14548 (1999).

    Article  CAS  Google Scholar 

  23. Hogg, R.C. et al. Single amino acid substitutions in α-conotoxin PnIA shift selectivity for subtypes of the mammalian neuronal nicotinic acetylcholine receptor. J. Biol. Chem. 274, 36559–36564 (1999).

    Article  CAS  Google Scholar 

  24. Fainzilber, M. et al. New mollusc-specific α-conotoxins block Aplysia neuronal acetylcholine receptors. Biochemistry 33, 9523–9529 (1994).

    Article  CAS  Google Scholar 

  25. Hogg, R.C., Hopping, G., Alewood, P.F., Adams, D.J. & Bertrand, D. α-conotoxins PnIA and [A10L]PnIA stabilize different states of the α7–L247T nicotinic acetylcholine receptor. J. Biol. Chem. 278, 26908–26914 (2003).

    Article  CAS  Google Scholar 

  26. Bertrand, D. et al. Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc. Natl. Acad. Sci. USA 89, 1261–1265 (1992).

    Article  CAS  Google Scholar 

  27. Celie, P.H.N. et al. Crystal structure of AChBP from Bulinus truncatus reveals the conserved structural scaffold and sites of variation in nicotinic acetylcholine receptors. J. Biol. Chem. in the press (2005); published online 16 May 2005 (10.1074/jbc.M414476200).

  28. Hu, S.H. et al. The 1.1 Å crystal structure of the neuronal acetylcholine receptor antagonist, α-conotoxin PnIA from Conus pennaceus. Structure 4, 417–423 (1996).

    Article  CAS  Google Scholar 

  29. Hu, S.H., Gehrmann, J., Alewood, P.F., Craik, D.J. & Martin, J.L. Crystal structure at 1.1 A resolution of α-conotoxin PnIB: comparison with α-conotoxins PnIA and GI. Biochemistry 36, 11323–11330 (1997).

    Article  CAS  Google Scholar 

  30. Dutertre, S. & Lewis, R.J. Computational approaches to understand α-conotoxin interactions at neuronal nicotinic receptors. Eur. J. Biochem. 271, 2327–2334 (2004).

    Article  CAS  Google Scholar 

  31. Lee, W.Y. & Sine, S.M. Invariant aspartic Acid in muscle nicotinic receptor contributes selectively to the kinetics of agonist binding. J. Gen. Physiol. 124, 555–567 (2004).

    Article  CAS  Google Scholar 

  32. Le Novere, N., Grutter, T. & Changeux, J.P. Models of the extracellular domain of the nicotinic receptors and of agonist- and Ca2+-binding sites. Proc. Natl. Acad. Sci. USA 99, 3210–3215 (2002).

    Article  CAS  Google Scholar 

  33. Wolfender, J.L. et al. Identification of tyrosine sulfation in Conus pennaceus conotoxins α-PnIA and α-PnIB: further investigation of labile sulfo- and phosphopeptides by electrospray, matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry. J. Mass Spectrom. 34, 447–454 (1999).

    Article  CAS  Google Scholar 

  34. Quiram, P.A., McIntosh, J.M. & Sine, S.M. Pairwise interactions between neuronal α(7) acetylcholine receptors and α-conotoxin PnIB. J. Biol. Chem. 275, 4889–4896 (2000).

    Article  CAS  Google Scholar 

  35. Gao, F. et al. Agonist-mediated conformational changes in acetylcholine-binding protein revealed by simulation and intrinsic tryptophan fluorescence. J. Biol. Chem. 280, 8443–8451 (2005).

    Article  CAS  Google Scholar 

  36. Bourne, Y., Talley, T.T., Hansen, S.B., Taylor, P. & Marchot, P. Crystal structure of a Cbtx–AChBP complex reveals essential interactions between snake α-neurotoxins and nicotinic receptors. EMBO J. 24, 1512–1522 (2005).

    Article  CAS  Google Scholar 

  37. Schneider, T.R. A genetic algorithm for the identification of conformationally invariant regions in protein molecules. Acta Crystallogr. D 58, 195–208 (2002).

    Article  Google Scholar 

  38. Broxton, N. et al. Leu(10) of α-conotoxin PnIB confers potency for neuronal nicotinic responses in bovine chromaffin cells. Eur. J. Pharmacol. 390, 229–236 (2000).

    Article  CAS  Google Scholar 

  39. Unwin, N., Miyazawa, A., Li, J. & Fujiyoshi, Y. Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the α subunits. J. Mol. Biol. 319, 1165–1176 (2002).

    Article  CAS  Google Scholar 

  40. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 424, 949–955 (2003).

    Article  Google Scholar 

  41. Moore, M.A. & McCarthy, M.P. Snake venom toxins, unlike smaller antagonists, appear to stabilize a resting state conformation of the nicotinic acetylcholine receptor. Biochim. Biophys. Acta 1235, 336–342 (1995).

    Article  Google Scholar 

  42. Kasheverov, I. et al. Photoactivable α-conotoxins reveal contacts with all subunits as well as antagonist-induced rearrangements in the Torpedo californica acetylcholine receptor. Eur. J. Biochem. 268, 3664–3673 (2001).

    Article  CAS  Google Scholar 

  43. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4 Å resolution. J. Mol. Biol. 346, 967–989 (2005).

    Article  CAS  Google Scholar 

  44. Zhmak, M.N. et al. [Efficient synthesis of natural α-conotoxins and their analogs.]. Bioorg. Khim. 27, 83–88 (2001).

    CAS  PubMed  Google Scholar 

  45. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  Google Scholar 

  46. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  47. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  48. Ritchie, D.W. & Kemp, G.J. Protein docking using spherical polar Fourier correlations. Proteins 39, 178–194 (2000).

    Article  CAS  Google Scholar 

  49. Morris, G.M. et al. Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998).

    Article  CAS  Google Scholar 

  50. Guex, N. & Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Utkin for providing snake venom toxins and fruitful discussions, beamline staff at European Synchrotron Radiation Facility Grenoble for assistance with data collection and K. Brejc and C. Ulens for critically reading the manuscript. The work was supported by a NWO-RFBR grant (A.B.S. and V.I.T.) and in part by MCB RAN grant (V.I.T.), by STW-BBC6035 (T.K.S. and A.B.S.), by NWO-CW 98016 (T.K.S.) and EU-SPINE (T.K.S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to August B Smit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Thermodynamic parameters. (PDF 60 kb)

Supplementary Table 2

Contacts of α-conotoxin with AChBP and α7-nAChR. (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celie, P., Kasheverov, I., Mordvintsev, D. et al. Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant. Nat Struct Mol Biol 12, 582–588 (2005). https://doi.org/10.1038/nsmb951

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb951

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing