Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions

Abstract

The Ku heterodimer, comprised of Ku70 and Ku80 subunits, is a conserved complex involved in nonhomologous end-joining (NHEJ). However, it also functions in maintenance of telomeres, chromosome termini normally resistant to end-joining events. To elucidate the spatial organization of these functions, we rationally guided Ku mutagenesis in yeast with real-valued evolutionary trace (rvET). This revealed two ancestrally related α-helices: one on the Ku70 surface that is required in yeast for NHEJ, and a second on the Ku80 surface that is required in yeast for telomeric heterochromatin formation. When bound to a DNA end, the surface containing the NHEJ-specific Ku70 helix is oriented toward the DNA terminus, whereas the surface containing the telomeric function–specific Ku80 helix faces inward, toward telomeric chromatin, when bound to a telomere. We propose a 'two-face' model for Ku and that divergent evolution of these faces allowed Ku's dual role in NHEJ and telomere maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Yku80 vWA evolutionary trace cluster is required for Ku's telomeric functions.
Figure 2: Yku80 surface α-helix 5 is essential for telomeric silencing.
Figure 3: Yeast Ku80 α5 mutations impair Sir4-Yku80 interaction, as measured by the activity of a β-galactosidase reporter (see Methods).
Figure 4: Yku70 surface α-helix 5 is essential for NHEJ.
Figure 5: Two-face model of Ku's functional organization at DSBs compared with telomeres.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

    Article  CAS  Google Scholar 

  2. d'Adda di Fagagna, F., Teo, S.H. & Jackson, S.P. Functional links between telomeres and proteins of the DNA-damage response. Genes Dev. 18, 1781–1799 (2004).

    Article  Google Scholar 

  3. Viscardi, V., Clerici, M., Cartagena-Lirola, H. & Longhese, M.P. Telomeres and DNA damage checkpoints. Biochimie 87, 613–624 (2005).

    Article  CAS  Google Scholar 

  4. Riha, K., Heacock, M.L. & Shippen, D.E. The role of the nonhomologous end-Joining DNA double-strand break repair pathway in telomere biology. Annu. Rev. Genet. 40, 237–277 (2006).

    Article  CAS  Google Scholar 

  5. Miyoshi, T., Sadaie, M., Kanoh, J. & Ishikawa, F. Telomeric DNA ends are essential for the localization of Ku at telomeres in fission yeast. J. Biol. Chem. 278, 1924–1931 (2003).

    Article  CAS  Google Scholar 

  6. Riha, K., Watson, J.M., Parkey, J. & Shippen, D.E. Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J. 21, 2819–2826 (2002).

    Article  CAS  Google Scholar 

  7. Hsu, H.L., Gilley, D., Blackburn, E.H. & Chen, D.J. Ku is associated with the telomere in mammals. Proc. Natl. Acad. Sci. USA 96, 12454–12458 (1999).

    Article  CAS  Google Scholar 

  8. Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R.J. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741–745 (1998).

    Article  CAS  Google Scholar 

  9. Celli, G.B., Denchi, E.L. & de Lange, T. Ku70 stimulates fusion of dysfunctional telomeres yet protects chromosome ends from homologous recombination. Nat. Cell Biol. 8, 885–890 (2006).

    Article  Google Scholar 

  10. Espejel, S. et al. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J. 21, 2207–2219 (2002).

    Article  CAS  Google Scholar 

  11. Ferreira, M.G. & Cooper, J.P. The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol. Cell 7, 55–63 (2001).

    Article  CAS  Google Scholar 

  12. Fisher, T.S., Taggart, A.K. & Zakian, V.A. Cell cycle-dependent regulation of yeast telomerase by Ku. Nat. Struct. Mol. Biol. 11, 1198–1205 (2004).

    Article  CAS  Google Scholar 

  13. Porter, S.E., Greenwell, P.W., Ritchie, K.B. & Petes, T.D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24, 582–585 (1996).

    Article  CAS  Google Scholar 

  14. Stellwagen, A.E., Haimberger, Z.W., Veatch, J.R. & Gottschling, D.E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17, 2384–2395 (2003).

    Article  CAS  Google Scholar 

  15. Nugent, C.I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657–660 (1998).

    Article  CAS  Google Scholar 

  16. Polotnianka, R.M., Li, J. & Lustig, A.J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8, 831–834 (1998).

    Article  CAS  Google Scholar 

  17. Maringele, L. & Lydall, D. ExoI-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Δ mutants. Genes Dev. 16, 1919–1933 (2002).

    Article  CAS  Google Scholar 

  18. Boulton, S.J. & Jackson, S.P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).

    Article  CAS  Google Scholar 

  19. Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653–656 (1998).

    Article  CAS  Google Scholar 

  20. Cosgrove, A.J., Nieduszynski, C.A. & Donaldson, A.D. Ku complex controls the replication time of DNA in telomere regions. Genes Dev. 16, 2485–2490 (2002).

    Article  CAS  Google Scholar 

  21. Palmbos, P.L., Daley, J.M. & Wilson, T.E. Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol. Cell. Biol. 25, 10782–10790 (2005).

    Article  CAS  Google Scholar 

  22. Bertuch, A.A. & Lundblad, V. The Ku heterodimer performs separable activities at double strand breaks and chromosome termini. Mol. Cell. Biol. 23, 8202–8215 (2003).

    Article  CAS  Google Scholar 

  23. Walker, J.R., Corpina, R.A. & Goldberg, J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607–614 (2001).

    Article  CAS  Google Scholar 

  24. Rivera-Calzada, A., Spagnolo, L., Pearl, L.H. & Llorca, O. Structural model of full-length human Ku70-Ku80 heterodimer and its recognition of DNA and DNA-PKcs. EMBO Rep. 8, 56–62 (2007).

    Article  CAS  Google Scholar 

  25. Yoo, S., Kimzey, A. & Dynan, W.S. Photocross-linking of an oriented DNA repair complex. Ku bound at a single DNA end. J. Biol. Chem. 274, 20034–20039 (1999).

    Article  CAS  Google Scholar 

  26. Bianchi, A. & de Lange, T. Ku binds telomeric DNA in vitro. J. Biol. Chem. 274, 21223–21227 (1999).

    Article  CAS  Google Scholar 

  27. Daley, J.M., Palmbos, P.L., Wu, D. & Wilson, T.E. Nonhomologous end joining in yeast. Annu. Rev. Genet. 39, 431–451 (2005).

    Article  CAS  Google Scholar 

  28. Valdar, W.S. Scoring residue conservation. Proteins 48, 227–241 (2002).

    Article  CAS  Google Scholar 

  29. Mihalek, I., Res, I. & Lichtarge, O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J. Mol. Biol. 336, 1265–1282 (2004).

    Article  CAS  Google Scholar 

  30. Madabushi, S. et al. Structural clusters of evolutionary trace residues are statistically significant and common in proteins. J. Mol. Biol. 316, 139–154 (2002).

    Article  CAS  Google Scholar 

  31. Yao, H. et al. An accurate, sensitive, and scalable method to identify functional sites in protein structures. J. Mol. Biol. 326, 255–261 (2003).

    Article  CAS  Google Scholar 

  32. Lee, S.E., Paques, F., Sylvan, J. & Haber, J.E. Role of yeast SIR genes and mating type in directing DNA double-strand breaks to homologous and non-homologous repair paths. Curr. Biol. 9, 767–770 (1999).

    Article  CAS  Google Scholar 

  33. Taddei, A., Hediger, F., Neumann, F.R., Bauer, C. & Gasser, S.M. Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J. 23, 1301–1312 (2004).

    Article  CAS  Google Scholar 

  34. Chothia, C. The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105, 1–12 (1976).

    Article  CAS  Google Scholar 

  35. Mishra, K. & Shore, D. Yeast Ku protein plays a direct role in telomeric silencing and counteracts inhibition by rif proteins. Curr. Biol. 9, 1123–1126 (1999).

    Article  CAS  Google Scholar 

  36. Boulton, S.J. & Jackson, S.P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15, 5093–5103 (1996).

    Article  CAS  Google Scholar 

  37. Gell, D. & Jackson, S.P. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex. Nucleic Acids Res. 27, 3494–3502 (1999).

    Article  CAS  Google Scholar 

  38. Driller, L. et al. A short C-terminal domain of Yku70p is essential for telomere maintenance. J. Biol. Chem. 275, 24921–24927 (2000).

    Article  CAS  Google Scholar 

  39. Song, K., Jung, D., Jung, Y., Lee, S.G. & Lee, I. Interaction of human Ku70 with TRF2. FEBS Lett. 481, 81–85 (2000).

    Article  CAS  Google Scholar 

  40. Bowater, R. & Doherty, A.J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet. 2, e8 (2006).

    Article  Google Scholar 

  41. Doherty, A.J., Jackson, S.P. & Weller, G.R. Identification of bacterial homologues of the Ku DNA repair proteins. FEBS Lett. 500, 186–188 (2001).

    Article  CAS  Google Scholar 

  42. Manolis, K.G. et al. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J. 20, 210–221 (2001).

    Article  CAS  Google Scholar 

  43. Shenoy, S.K. et al. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J. Biol. Chem. 281, 1261–1273 (2006).

    Article  CAS  Google Scholar 

  44. Sowa, M.E. et al. Prediction and confirmation of a site critical for effector regulation of RGS domain activity. Nat. Struct. Biol. 8, 234–237 (2001).

    Article  CAS  Google Scholar 

  45. Martinez, J.J., Seveau, S., Veiga, E., Matsuyama, S. & Cossart, P. Ku70, a component of DNA-dependent protein kinase, is a mammalian receptor for Rickettsia conorii. Cell 123, 1013–1023 (2005).

    Article  CAS  Google Scholar 

  46. Sawada, M. et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat. Cell Biol. 5, 320–329 (2003).

    Article  CAS  Google Scholar 

  47. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  48. Waterman, M.S. Introduction to Computational Biology (Chapman & Hall/CRC Press, Boca Raton, Florida, USA, 2000).

    Google Scholar 

  49. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  50. Roy, R., Meier, B., McAinsh, A.D., Feldmann, H.M. & Jackson, S.P. Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing. J. Biol. Chem. 279, 86–94 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Huang and D. Wuttke for critical reading of the manuscript, S. Almaguer, S. Haricharan and C. Williams for technical assistance and H. Feldmann (Universität Munchen), D. Gottschling (Fred Hutchinson Cancer Research Center), J. Haber (Brandeis University) and V. Lundblad (Salk Institute for Biological Studies) for strains and plasmids. This work was supported by US National Institutes of Health grant RO1-GM066099, US National Science Foundation grant DBI0547695 and the March of Dimes grant FY06-371 (O.L.), and by a gift from the Cyvia and Melvyn Wolff Family Foundation (A.A.B.). rvET analysis is available publicly through the Lichtarge Computational Biology Lab server (http://mammoth.bcm.tmc.edu/).

Author information

Authors and Affiliations

Authors

Contributions

A.R.-Z. was the first to propose using evolutionary trace to study the Ku heterodimer. He performed all of the experiments except for the telomeric single-stranded overhang analysis, and, together with A.A.B., conceived the experimental design and interpreted the data. I.M. performed the rvET analysis and contributed to data analysis. O.L. oversaw the rvET analysis and contributed to data analysis. A.A.B. performed the telomeric single-stranded overhang analysis and oversaw the entire project. All authors contributed to the preparation of the final manuscript.

Corresponding author

Correspondence to Alison A Bertuch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Yku80 mutants with global telomere defects. (PDF 2695 kb)

Supplementary Fig. 2

G-tail analysis of yku80 α5 mutant strains. (PDF 927 kb)

Supplementary Table 1

Summary of Ku80 vWA-like cluster mutagenesis. (PDF 91 kb)

Supplementary Table 2

Summary of Ku70 vWA-like cluster mutagenesis. (PDF 68 kb)

Supplementary Table 3

Yeast strains. (PDF 95 kb)

Supplementary Table 4

Plasmids. (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribes-Zamora, A., Mihalek, I., Lichtarge, O. et al. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat Struct Mol Biol 14, 301–307 (2007). https://doi.org/10.1038/nsmb1214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing