Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of apocytochrome b562

Abstract

The apoprotein is an important intermediate on the folding pathways of many haem proteins, yet a detailed structure of such an intermediate has remained elusive. Here we present the structure of apocytochrome b562 obtained by NMR spectroscopy. The apoprotein has a topology similar to the holoprotein. Nevertheless, significant differences in helix–helix packing between the two are evident. Much of the haem binding pocket in the apoprotein is preserved but exposed to solvent creating a large cavern. As apocytochrome b562 displays many of the physical characteristics ascribed to the molten globule state, these results help ellucidate the origin of several properties of the protein molten globule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Creighton, T.E. The disulphide folding pathway of BPTI. Science 256, 111–112 (1992).

    Article  CAS  Google Scholar 

  2. Oas, T. & Kim, P.S. A peptide model of a protein folding intermediate. Nature 336, 42–48 (1988).

    Article  CAS  Google Scholar 

  3. Hughson, F.M., Barrick, D. & Baldwin, R.L. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry 30, 4113–4118 (1991).

    Article  CAS  Google Scholar 

  4. Baum, J., Dobson, C.E., Evans, P.A. & Hanley, C. Characterization of a partly folded protein by NMR methods: Studies on the molten globule state of guinea pig α-lactalbumin. Biochemisty 28, 7–13 (1989).

    Article  CAS  Google Scholar 

  5. Jeng, M.-F., Englander, S.W., Elove, G.A., Wand, A.J. & Roder, H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 29, 10433–10437 (1990).

    Article  CAS  Google Scholar 

  6. Jeng, M.-F. & Englander, S.W. Stable submolecular folding units in a non-compact form of cytochrome c. J. molec. Biol. 221, 1045–1061 (1991).

    Article  CAS  Google Scholar 

  7. Ikeguchi, M., Kuwajima, K. & Sugai, S. Ca2+-induced alteration in the unfolding behavior of α-lactalbumin. J. Biochem. 99, 1191–1201 (1986).

    Article  CAS  Google Scholar 

  8. Moore, C.D. & Lecomte, J.T.J. Structural properties of apocytochrome b5: Presence of a stable native core. Biochemistry 29, 1984–1989 (1990).

    Article  CAS  Google Scholar 

  9. Cocco, M.J. & Lecomte, J.T.J. Characterization of hydrophobic cores in apomyoglobin: A proton NMR spectroscopy study. Biochemistry 29, 11067–11072 (1990).

    Article  CAS  Google Scholar 

  10. Hughson, F.M., Wright, P.E. & Baldwin, R.L. Structural characterization of a partly folded apomyoglobin intermediate. Science 249, 1544–1548 (1990).

    Article  CAS  Google Scholar 

  11. Feng, Y. & Sligar, S.G. Effect of heme binding on the structure and stability of Escherichia coli apocytochrome b562 . Biochemistry 30, 10150–10155 (1991).

    Article  CAS  Google Scholar 

  12. Hughson, F.M. & Baldwin, R.L. Use of site-directed mutagenesis to destabilize native apomyoglobin relative to folding intermediates. Biochemistry 28, 4415–4422 (1989).

    Article  CAS  Google Scholar 

  13. Cocco, M.J., Kao, Y-H., Phillips, A.T. & Lecomte, J.T.J. Structural comparison of apomyoglobin and metaquomyoglobin: pH titration histidines by NMR spectroscopy. Biochemistry 31, 6481–6491 (1992).

    Article  CAS  Google Scholar 

  14. Moore, C.D., AI-Misky, O.N. & Lecomte, J.T. Similarities in structure in structure between holocytochrome b5 and apocytochrome b5: NMR studies of histidine residues. Biochemistry 30, 8357–8365 (1991).

    Article  CAS  Google Scholar 

  15. Lecomte, J.T.J. & Moore, C.D. Helix formation in apocytochrome b5: The role of a neutral histidine at the N-cap position. J. Am. chem. Soc. 113, 9663–9665 (1991).

    Article  CAS  Google Scholar 

  16. Feng, Y., Wand, A.J. & Sligar, S.G. 1H and 15N NMR resonance assignments and preliminary structural characterization of Escherichia coli apocytochrome b562 . Biochemistry 30, 7711–7717 (1991).

    Article  CAS  Google Scholar 

  17. Robinson, C. & Sligar, S.G. Electrostatic stabilization in four helix bundle proteins. Protein Science 2, 826–837 (1993).

    Article  CAS  Google Scholar 

  18. Macura, S. & Ernst, R.R. Elucidation of cross relaxation in liquids by two-dimensional NMR spectroscopy. Molec. Phys. 61, 95–119 (1980).

    Article  Google Scholar 

  19. Wüthrich, K., Billeter, M. & Braun, W. Polypeptide secondary structure determination by NMR observation of short proton-proton distances J. molec. Biol. 180, 715–740 (1984).

    Article  Google Scholar 

  20. Englander, S.W. & Wand, A.J. Main chain directed strategy for the assignment of 1H NMR spectra of proteins. Biochemistry 28, 5953–5958 (1987).

    Article  Google Scholar 

  21. Wand, A.J. & Nelson, S.J. Refinement of the main chain directed assignment strategy for the analysis of 1H NMR spectra of proteins. Biophys. J. 59, 1301–1112 (1991).

    Article  Google Scholar 

  22. Clore, G.M. & Gronenborn, A.M. A. Rev. Biophys. biophys. Chem. 20, 29–63 (1991).

    Article  CAS  Google Scholar 

  23. Lederer, F., Glatigny, A., Bethge, P.H., Bellamy, H.D. & Mathews, F.S. Improvement of the 2.5 Å resolution model of cytochrome b562 by redetermining the primary structure and using molecular graphics. J. molec. Biol. 148, 427–448 (1981).

    Article  CAS  Google Scholar 

  24. Lee, B. & Richards, F. The interpretation of protein structures: Estimation of static accessibility. J. molec. Biol. 55, 379–400 (1971).

    Article  CAS  Google Scholar 

  25. Spolar, R.S., Ha, J.-H. & Record, M.T. Hydrophobic effect in protein folding and other noncovalent processes involving proteins. Proc. natn. Acad. Sci. U.S.A. 86, 8382–8385 (1989).

    Article  CAS  Google Scholar 

  26. Privalov, P.L. & Makhatadze, G.I. Heat capacity of proteins. 2. Partial molar heat capacity of the unfolded polypeptide cahin of proteins- protein unfolding effects. J. molec. Biol. 213, 385–391 (1990).

    Article  CAS  Google Scholar 

  27. Haynie, D.T. & Freire, E. Structural energetics of the molten globule state. Proteins 16, 115–140 (1993).

    Article  CAS  Google Scholar 

  28. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  Google Scholar 

  29. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. A. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  30. Baldwin, R.L. Molten globules: Specific or nonspecific folding intermediates? Chemtracts-Biochemistry & Molecular Biology 2, 379–389 (1991).

    CAS  Google Scholar 

  31. Barrick, D. & Baldwin, R.L. The molten globule intermediate of apomyoglobin and the process of protein folding. Protein Science 2, 869–876 (1993).

    Article  CAS  Google Scholar 

  32. Stockman, B.J., Euvrard, A. & Scahill, T.A. Heteronuclear three-dimensional NMR spectroscopy of a partially denatured protein: The A-state of human ubiquitin. J. biomolecular NMR 3, 285–296 (1993).

    Article  CAS  Google Scholar 

  33. Chyan, C.-L., Wormald, C., Dobson, C.M., Evans, P.A., Baum, J. Biochemistry 29, 5681–5691 (1992).

    Google Scholar 

  34. Nikkila, H., Gennis, R. & Sligar, S.G. Cloning and expression of the gene encoding the soluble cytochrome b562 of Escherichia coli. Eur. J. Biochem. 202, 309–313 (1991).

    Article  CAS  Google Scholar 

  35. Teale, F.W.J. Cleavage of the haem-protein link by acid methylethylketone. Biochem. biophys. Acta. 35, 543 (1959).

    Article  CAS  Google Scholar 

  36. Kay, L.E., Marion, D. & Bax, A. Practical aspects of 3D heteronuclear NMR of proteins. J. magn. Reson. 84, 72–84 (1989).

    CAS  Google Scholar 

  37. Kay, L.E. & Bax, A. New methods for the measurement of NH-CaH coupling constants in 15N-labeled proteins. J. magn. Reson. 86, 110–126 (1990).

    CAS  Google Scholar 

  38. Pardi, A., Wagner, G. & Wüthrich, K. Calibration of the angular dependence of the amide proton-C α-proton coupling constants 3JHNα, in a globular protein J. molec. Biol. 180, 741–751 (1984).

    Article  CAS  Google Scholar 

  39. Nerdal, W., Hare, D.R. & Reid, B.R. 3-dimensional structure of the wild-type Lac Pribinov promoter DNA in solution- two dimensional nuclear magnetic resonance studies and distance geometry calculations. J. molec. Biol. 201, 717–721 (1988).

    Article  CAS  Google Scholar 

  40. Weber, P.L., Morrison, R. & Hare, D.R. Determining the stereo-specific 1H nuclear magnetic resonance assignments from distance geometry calculations. J. molec. Biol. 204, 483–487 (1988).

    Article  CAS  Google Scholar 

  41. Brünger, A.T., Clore, G.M., Gronenborn, A.M. & Karplus, M. Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: Application to crambin. Proc. natn. Acad. Sci. U.S.A. 83, 3801–3805 (1986).

    Article  Google Scholar 

  42. Carson, M. Ribbon models of macromolecules. J. molec. Graphics 5, 103–106 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Sligar, S. & Wand, A. Solution structure of apocytochrome b562. Nat Struct Mol Biol 1, 30–35 (1994). https://doi.org/10.1038/nsb0194-30

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0194-30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing