This paper presents the first neutron scattering measurement of 1,2‐1,4‐polybutadienes with varying microstructure. Incoherent inelastic scattering experiments have been performed in the range of moderate (ΔE≊300 μeV) and high (ΔE≊20 μeV) energy resolution. For the moderate resolution experiments the vibration–relaxation model has been used as a guideline for interpretation. The most striking influence of the microstructure variation can be found in the position of the boson peak. Its position at low temperature as well as its temperature dependence is significantly different among the measured samples. The high resolution data have been Fourier transformed into the time domain yielding the intermediate incoherent scattering function in a time range of 5,...,150 ps. There, the basic properties found for 1,4‐polybutadiene earlier could be reproduced (separation of α and βslow regimes of the slow relaxation, Kohlrausch–Williams–Watts function with β≊0.4). On the basis of the new data, no microstructure induced differences can be detected except for the changes of temperature dependence due to the strongly different glass‐transition temperatures and different fragility.

1.
T.
Kanaya
et al.,
Chem. Phys. Lett.
150
,
334
(
1988
).
2.
K.
Inoue
et al.,
J. Chem. Phys.
95
,
5332
(
1991
).
3.
W. A.
Phillips
et al.,
Phys. Rev. Lett.
63
,
2381
(
1989
).
4.
W.
Doster
,
S.
Cusack
, and
W.
Petry
,
Phys. Rev. Lett.
65
,
1080
(
1990
).
5.
R.
Zorn
et al.,
Phys. A
201
,
52
(
1993
).
6.
For a comprehensive presentation of the MCTh see Aspects of Structural Glass Transition, W. Götze, in Les Houches. Session LI. Liquids, Freezing, and Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991), p. 287.
7.
B.
Frick
,
D.
Richter
, and
S.
Trevino
,
Phys. A
201
,
88
(
1993
).
8.
F.
Mezei
,
W.
Knaak
, and
B.
Farago
,
Phys. Scr. T
19
,
363
(
1987
).
9.
D.
Richter
,
B.
Frick
, and
B.
Farago
,
Phys. Rev. Lett.
61
,
2465
(
1988
).
10.
W.
Petry
et al.,
Z. Phys. B
83
,
175
(
1991
).
11.
B.
Frick
et al.,
Z. Phys. B
70
,
73
(
1988
).
12.
R. Zorn, Phys. Rev. B (submitted).
13.
Notably, this temperature is identical to the temperature suggested by mode-coupling theory as the “idealized” critical temperature of the glasstransition.
14.
D.
Richter
et al.,
Phys. Rev. Lett.
68
,
71
(
1992
).
15.
The index “slow” has been introduced because historically the term β relaxation originates from the field of dielectric measurements but is a distinct phenomenon from the predicted β relaxation of mode-coupling theory.
16.
J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).
17.
J. M.
Carella
,
W. W.
Graessley
, and
L. J.
Fetters
,
Macromolecules
17
,
2775
(
1984
).
18.
R. H.
Colby
,
L. J.
Fetters
, and
W. W.
Graessley
,
Macromolecules
20
,
2226
(
1987
).
19.
S.
Ni
,
L.
Shen
,
F.
Yu
, and
B.
Qian
,
J. Appl. Polym. Sci.
41
,
13
(
1990
).
20.
C. M.
Roland
and
K. L.
Ngai
,
Macromolecules
24
,
5315
(
1991
).
21.
R.
Zorn
et al.,
Macromolecules
28
,
8552
(
1995
).
22.
W. S.
Bahary
,
D. I.
Sapper
, and
J. H.
Lane
,
Rubber Chem. Technol.
40
,
1529
(
1967
).
23.
C. A.
Angell
and
W.
Sichina
,
Ann. N Y Acad. Sci.
279
,
53
(
1967
).
24.
C. A.
Angell
,
J. Phys. Chem. Solids
49
,
863
(
1988
).
25.
A. P.
Sokolov
et al.,
Phys. Rev. Lett.
71
,
2062
(
1993
).
26.
M.
Morton
and
L. J.
Fetters
,
Rubber Chem. Technol.
48
,
359
(
1975
).
27.
K.
Inoue
et al.,
Nucl. Instr. Meth. A
238
,
401
(
1985
).
28.
K.
Inoue
et al.,
Nucl. Instrum. Methods A,
309
,
294
(
1991
).
29.
U.
Buchenau
et al.,
Phys. Rev. Lett.
73
,
2344
(
1994
).
30.
R.
Zorn
et al.,
Phys. Rev. E
52
,
781
(
1995
).
31.
E. P.
Wigner
,
Ann. Math.
67
,
325
(
1958
).
32.
S. D.
Bembenek
and
B. B.
Laird
,
Phys. Rev. Lett.
74
,
936
(
1995
).
33.
B.-C.
Xu
and
R. M.
Stratt
,
J. Chem. Phys.
92
,
1923
(
1989
).
34.
J.
Colmenero
et al.,
Phys. Rev. B
44
,
7321
(
1991
).
35.
Because the rheological measurements were not performed at the same temperatures the Vogel‐Fulcher‐Tamman expression exp(1436 K/(T 2220.4 K)) has been used which is an excellent approximation in this temperature range.
36.
J.
Colmenero
et al.,
Phys. Rev. Lett.
69
,
478
(
1992
).
37.
A technical feature visible here as well as for the other parameters is that the error bars and the scatter is much lower for the cited experiment which is due to the better statistics obtainable on IN6.
38.
B. Strube (unpublished).
39.
B.
Frick
,
B.
Farago
, and
D.
Richter
,
Phys. Rev. Lett.
64
,
2921
(
1990
).
40.
In general, this interval will not be symmetric, but the missing values on the shorter side can be substituted by mirroring the values from the other side of the interval using the detailed balance relation.
This content is only available via PDF.
You do not currently have access to this content.