Characteristics of chlorine, transformer-coupled pulsed plasmas are reported. Time dependencies of electron (ne), positive ion (ni+), and negative ion (ni) densities and electron temperatures (Te) were measured with a Langmuir probe and microwave interferometry at 240 and 500 W input powers, and pressures between 3 and 20 mTorr. During the OFF portion of the power modulation, ne decreases rapidly as Cl is formed by dissociative attachment of Cl2. The formation of Cl is accelerated at high Cl2 densities (at high pressures and low powers). At 10 mTorr and higher pressures, an ion–ion plasma forms near the end of the OFF portion of the cycle, the sheath collapses, and Cl reaches the wafer. Te decays rapidly in the OFF period and increases with a similar time constant at the beginning of the ON cycle if electrons are present at a sufficiently high level. If ne is very low at the beginning of the ON cycle, such as at high pressure (10 mTorr), then Te exhibits a spike at the beginning of the ON period. In a comparison study, plasma induced damage is reduced when aluminum is etched under similar source power modulation conditions.

1.
S.
Samukawa
and
K.
Terada
,
J. Vac. Sci. Technol. B
12
,
3300
(
1994
).
2.
T.
Mieno
and
S.
Samukawa
,
Jpn. J. Appl. Phys., Part 1
34
,
1079
(
1995
).
3.
S.
Samukawa
and
T.
Tsukada
,
Appl. Phys. Lett.
69
,
1056
(
1996
).
4.
T. H.
Ahn
,
K.
Nakamura
, and
H.
Sugai
,
Plasma Sources Sci. Technol.
5
,
139
(
1996
).
5.
K.
Hashimoto
,
Jpn. J. Appl. Phys., Part 1
33
,
6013
(
1994
).
6.
M. V.
Malyshev
,
V. M.
Donnelly
,
A.
Kornblit
,
N. A.
Ciampa
,
J. I.
Colonell
, and
J. T. C.
Lee
,
J. Vac. Sci. Technol. A
17
,
480
(
1999
).
7.
S.
Samukawa
and
S.
Furuoya
,
Appl. Phys. Lett.
63
,
2044
(
1993
).
8.
H.
Sugai
,
K.
Nakamura
,
Y.
Hikosaka
, and
M.
Nakamura
,
J. Vac. Sci. Technol. A
13
,
887
(
1995
).
9.
L. J. Overzet, J. T. Verdeyen, R. M. Roth, and F. F. Carasco, Mater. Res. Soc. Symp. Proc. Pittsburgh, PA, 321 (1987).
10.
Y.
Watanabe
,
M.
Shiratani
,
Y.
Kubo
,
I.
Ogawa
, and
S.
Ogi
,
Appl. Phys. Lett.
53
,
1263
(
1988
).
11.
K. K. S.
Lau
and
K. K.
Gleason
,
J. Phys. Chem. B
101
,
6839
(
1997
).
12.
A. A.
Howling
,
L.
Sansonnens
,
J.-L.
Dorier
, and
C.
Hollinstein
,
J. Appl. Phys.
75
,
1340
(
1994
).
13.
G. A.
Hebner
and
C. B.
Fleddermann
,
J. Appl. Phys.
82
,
2814
(
1997
).
14.
M. A.
Lieberman
and
S.
Ashida
,
Plasma Sources Sci. Technol.
5
,
145
(
1996
).
15.
S.
Ashida
and
M. A.
Lieberman
,
Jpn. J. Appl. Phys., Part 1
36
,
854
(
1997
).
16.
J. G. Laframboise, University of Toronto, Institute of Aerospace, Report No. 100 (1966).
17.
J. E.
Allen
,
R. L. F.
Boyd
, and
P.
Reynolds
,
Proc. Phys. Soc. London, Sect. B
70
,
297
(
1957
).
18.
M. B.
Hopkins
,
J. Res. Natl. Inst. Stand. Technol.
100
,
415
(
1995
).
19.
The Cl density does not reach the cw value until much longer ON times, hence the “saturation values” for ne,ni, and Te at the end of the ON cycle at higher modulation frequencies can be different from those of a continuous plasma.
20.
The negative ion density, determined in this manner, could have an uncertainty of up to a factor of 3 when the negative ion density is of the order of the electron density. This uncertainty comes from the combined uncertainties of the positive ion and electron densities determined from different parts of the Langmuir probe current–voltage characteristics. The relative uncertainty in the negative ion density is even higher when the positive ion density and the electron densities are approximately equal, and a small nCl value is determined as a difference of two large values. Fortunately, the values of negative ion density is of little interest in such situations when the much more mobile electrons are responsible for the negative currents in the plasma. Conversely, when of the electron density is much lower than positive and negative ion densities (the most important case), the relative uncertainty of the negative ion density is the same as that for the positive ions, since nCl≪ni+.
21.
M. V.
Malyshev
,
V. M.
Donnelly
,
A.
Kornblit
, and
N. A.
Ciampa
,
J. Appl. Phys.
84
,
137
(
1998
).
22.
G. L.
Rogoff
,
J. M.
Kramer
, and
R. B.
Piejak
,
IEEE Trans. Plasma Sci.
PS-14
,
103
(
1986
).
23.
S.
Ashida
,
C.
Lee
, and
M. A.
Lieberman
,
J. Vac. Sci. Technol. A
13
,
2498
(
1995
).
24.
V. A. Godyak, Soviet Radio Frequency Discharge Research (Delphic Associates, Falls Church, VA, 1986).
25.
M. V. Malyshev and V. M. Donnelly (unpublished).
This content is only available via PDF.
You do not currently have access to this content.