Elsevier

Chemical Physics

Volume 155, Issue 1, 1 August 1991, Pages 49-61
Chemical Physics

Material properties of low-dimensional charge-transfer salts. II. Mode-softening, Peierls transitions and van Hove singularities

https://doi.org/10.1016/0301-0104(91)87005-GGet rights and content

Abstract

The formation of soft modes in low-dimensional metallic systems with planar and nonplanar Fermi surfaces is studied in a tight-binding approximation. The electronic prerequisites allowing for instabilities at wave vectors (0, 0, 2kF) and (π/a, π/b, 2kF0) are studied in the zero-temperature limit. The optimum conditions to find the second type of mode-softening are realized in 2:1 donor-acceptor systems with an integral charge transfer and weaker intermolecular tight-binding interactions. The underlying electronic-structure properties (i.e. half-filled dispersions, smaller hopping integrals) shift logarithmic van Hove singularities in the electronic density of states to the Fermi level. Mode-softening and van Hove singularities enhance cooperatively the strength of the electron-phonon coupling. This coincidence may lead to low-temperature superconductivity in the strong coupling limit. The most important differences between one-dimensional electronic instabilities at wavevector (0, 0, 2kF) and suggested processes at (π/a, π/b, 2kF0) are quantified. The Peierls transition temperatures observed in (Y, Z-DCNQI)2Cu salts with di substituents Y, Z are reproduced by a simple interpolation scheme. The Peierls transitions in these compounds are explained by some type of “umbrella” model, i.e. a cooperative departure in the different Cu salts from a region where electronic instabilities are prevented by “three-dimensionality”.

References (58)

  • M.C. Böhm et al.

    Chem. Phys.

    (1991)
  • M.C. Böhm

    Physica C

    (1990)
  • R.S. Markiewicz

    Physica C

    (1990)
    R.S. Markiewicz

    Physica C

    (1990)
  • R.S. Markiewicz et al.

    Physica C

    (1989)
  • A. Aumüller et al.

    Angew. Chem.

    (1986)
  • A. Kobayashi et al.

    Solid State Commun.

    (1987)
  • P. Erk et al.

    Angew. Chem.

    (1988)
  • M.C. Böhm and A. Staib, in...
  • Y. Hasegawa et al.

    J. Phys. Soc. Japan

    (1986)
  • K. Maki et al.

    Phys. Rev. B

    (1990)
  • J.E. Eldrige et al.

    Mol. Cryst. Liquid Cryst.

    (1985)
    H.K. Ng et al.

    Mol. Cryst. Liquid Cryst.

    (1985)
  • R. Kato et al.

    J. Am. Chem. Soc.

    (1989)
  • H.C. Wolf

    Nachr. Chem. Tech. Lab.

    (1989)
  • R.I. Peierls
    (1955)
  • W. Kohn

    Phys. Rev. Letters

    (1959)
  • B. Horovitz et al.

    Phys. Rev. B

    (1975)
  • P.M. Chaikin et al.

    J. Phys. C

    (1975)
  • K. Yamaji

    J. Phys. Soc. Japan

    (1982)
  • L. van Hove

    Phys. Rev.

    (1953)
  • J.R. Schrieffer
    (1986)
  • D.J. Scalapino
  • L.N. Bulaevskii

    Advan. Phys.

    (1988)
  • W. Weber

    Phys. Rev. Letters

    (1987)
  • R. Zeyher

    Z. Physik B

    (1990)
  • H.-P. Werner et al.

    Solid State Commun.

    (1988)
    J.U. von Schütz et al.

    Synth. Metals

    (1988)
  • S. Jafarey

    Phys. Rev. B

    (1977)
  • J.D. Jorgensen et al.

    Phys. Rev. Letters

    (1987)
  • L.F. Mattheis

    Phys. Rev. Letters

    (1987)
  • M.C. Böhm et al.

    Chem. Phys.

    (1989)
    G. Bubeck et al.

    Z. Physik B

    (1989)
  • View full text