Download citation
Download citation
link to html
In the title compound, C23H34O4, the two saturated six-membered rings have slightly flattened chair conformations and the unsaturated ring assumes a 8β,9α-half chair conformation distorted towards a 8β-sofa. The five-membered ring has an unusual conformation close to a 13β-envelope. The acetoxy and methyl ketone substituents are twisted with respect to the average molecular plane of the steroid nucleus. The mol­ecules are hydrogen-bonded head-to-head via the hydroxy and methyl ketone groups forming dimers, which are stacked in planes perpendicular to the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801008996/cv6029sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801008996/cv6029Isup2.hkl
Contains datablock I

CCDC reference: 170755

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.119
  • Data-to-parameter ratio = 10.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.47 From the CIF: _reflns_number_total 2553 Count of symmetry unique reflns 2612 Completeness (_total/calc) 97.74% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

As part of an ongoing project to clarify the behaviour of steroidal 16α,17α-epoxy ketones towards reactions with broad scope in the synthesis of bioactive steroids (Moreno, Costa et al., 1998), 16α-hydroxy-20-oxopregn-5-en-3β-yl acetate, (I), was prepared from the corresponding 16α,17α-epoxide by selective reductive opening with aluminium amalgam under ultrasonic conditions (Moreno et al., 1993; Moreno, Sá e Melo & Campos Neves, 1998). A comparative structural study of the steroidal 16α-hydroxy and 16α,17α-epoxy ketones with those functionalized at C21 or C15 is relevant for the purpose of correlating the observed differences in chemical reactivity (Moreno et al., 1993) with the effects of the stereochemistry of the substituents on molecular conformation.

The X-ray diffraction study of the title compound indicates that all rings are fused trans. An ORTEPII (Johnson, 1976) drawing of the molecule with the corresponding atomic numbering scheme and ring labels is shown in Fig. 1. Bond lengths and angles are within the range of expected values (Allen et al., 1987), with averages Csp3—Csp3 1.532 (4), Csp3—Csp2 1.504 (7) and Csp2—Csp2 1.321 (4) Å, except for a larger than ususal Csp2—Csp3 bond, i.e. C5—C10 [1.531 (4) Å].

Rings A and C have slightly flattened chair conformations, the mean values of their torsion angles being 53 (3) and 53.9 (15)°, respectively. As reported in a previous crystallographic work on the closely related 16α,17α-epoxy derivative (Andrade et al., 2001), the acetoxy group bonded to C3 does not disturb the usual chair conformation of the A ring of the steroid nucleus. The 3β-acetoxy group is planar and oriented equatorially. The dihedral angle between the acetoxy group and the mean molecular plane is 57.2 (2)°, showing that it is twisted around the C3—O3 bond. Due to the double C5C6 bond, the environment of the C5 atom is planar [sum of the valence angles around C5 is 360.0 (5)°]. Consequently, ring B is highly distorted assuming an 8β,9α-half chair conformation distorted towards a 8β-sofa [asymmetry parameters (Duax & Norton, 1975) are ΔC2(5,6) = 6.7 (4), ΔCS(6) = 16.3 (3) and ΔC2 = 47.8 (4)°]. The five-membered D ring assumes an unusual conformation close to 13β-envelope, with puckering parameters (Cremer & Pople, 1975) q2 = 0.483 (3) Å, ϕ2 = 188.2 (4)° [pseudo-rotation (Altona et al., 1968) and asymmetry parameters (Duax & Norton, 1975): Δ = 18.5 (6)°, ϕm = 48.7 (2)°, ΔCs(13) = 9.3 (3) and ΔC2(13,14) = 12.4 (4)°].

The conformation of the substituent group at C17 is characterized by a torsion angle C13—C17—C20—-O20 of 84.9 (3)°, slightly lower, but close to the values reported by Weeks et al. (1973) in a comparative study of six corticosteroids with a similar side chain at C17. The 17β-methyl ketone group is not coplanar with the mean molecular plane, the dihedral angle being 55.59 (14)°. The pseudo-torsion angle C19—C10—C13—C18 which measures the twist of the molecule is 3.4 (3)°, much smaller than the twist observed in the 16α,17α-epoxy steroid molecule [10.4 (2)°]. The linear dimension of the molecule given by the distance between terminal C21 and C23 atoms [13.680 (14) Å] is slightly smaller in the hydroxy- than in the epoxy-substituted steroid molecule [14.873 (4) Å].

The molecules are hydrogen bonded head-to-head via the hydroxy and methyl ketone groups. No weak C—H···O short contacts with suitable geometry to be classified as weak intermolecular interactions are found in the structure. Interestingly, the carbonyl O22 atom of the 3β-acetoxy group, which is a potential strong acceptor, is not involved in hydrogen bonding. This may be the reason of an increased librational motion or slight disorder of this atom, deduced from the enhanced displacement parameters of O22 when compared to those of neighbour atoms.

It should be stated that the absolute configuration of the molecule was not determined from the X-ray data but was chosen to give the correct chirality that was known beforehand from the synthesis route (Moreno et al., 1993).

Experimental top

16α,17α-Epoxy-20-oxopregn-5-en-3β-yl acetate, required for introduction of the 16α-hydroxy group, was easily prepared from commercially available 20-oxopregna-5,16-dien-3β-yl acetate through a two-step reaction (Kirk & Sá e Melo, 1979; Andrade et al., 2001). Synthesis of 16α-hydroxy-20-oxopregn-5-en-3β-yl acetate, (I), was efficiently accomplished by sonochemical reductive opening of the 16α,17α-epoxy ketone with aluminium amalgam (Moreno et al., 1993; Moreno, Sá e Melo & Campos Neves, 1998). The product of this reaction was isolated and identified as the title compound (I) from IR, 1H and 13C NMR spectroscopy (Moreno et al., 1993). Crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the steroid in methanol.

Refinement top

The H atoms were placed at calculated positions and refined as riding using SHELXL97 defaults, except for atom H16, involved in hydrogen bonding, which was refined isotropically with Uiso(H16) = 1.2Ueq(O16). Examination of the crystal structure with PLATON (Spek, 2001) showed that there are no solvent-accessible voids in the crystal lattice.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level except for H atoms which were given arbitrary radii.
[Figure 2] Fig. 2. Packing diagram showing the unit-cell contents viewed along the b axis and the hydrogen-bonding scheme.
16α-Hydroxy-20-oxopregn-5-en-3β-yl-acetate top
Crystal data top
C23H34O4F(000) = 408
Mr = 374.50Dx = 1.192 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 12.110 (9) ÅCell parameters from 25 reflections
b = 6.084 (3) Åθ = 6.1–11.3°
c = 15.024 (11) ŵ = 0.08 mm1
β = 109.54 (11)°T = 293 K
V = 1043.1 (12) Å3Plate, colourless
Z = 20.48 × 0.25 × 0.12 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.040
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.4°
Graphite monochromatorh = 1515
profile data from ω–2θ scansk = 07
5099 measured reflectionsl = 1919
2553 independent reflections3 standard reflections every 180 min
1631 reflections with I > 2σ(I) intensity decay: 7.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0722P)2]
where P = (Fo2 + 2Fc2)/3
2553 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C23H34O4V = 1043.1 (12) Å3
Mr = 374.50Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.110 (9) ŵ = 0.08 mm1
b = 6.084 (3) ÅT = 293 K
c = 15.024 (11) Å0.48 × 0.25 × 0.12 mm
β = 109.54 (11)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.040
5099 measured reflections3 standard reflections every 180 min
2553 independent reflections intensity decay: 7.2%
1631 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.16 e Å3
2553 reflectionsΔρmin = 0.19 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C90.72726 (18)0.9296 (5)0.52983 (16)0.0370 (6)
H90.71271.08800.52160.044*
C80.86126 (19)0.9042 (5)0.57368 (17)0.0387 (6)
H80.88170.74790.57680.046*
C140.90414 (19)1.0010 (5)0.67236 (17)0.0382 (6)
H140.88431.15760.66430.046*
O30.52302 (16)0.9422 (4)0.12741 (13)0.0620 (6)
C100.6767 (2)0.8284 (5)0.42967 (19)0.0397 (6)
C70.9178 (2)1.0229 (6)0.51097 (18)0.0456 (7)
H7A0.92091.17880.52510.055*
H7B0.99770.97110.52610.055*
C110.6640 (2)0.8537 (5)0.59778 (19)0.0501 (7)
H11A0.58150.88960.57050.060*
H11B0.67060.69510.60430.060*
C60.8552 (2)0.9913 (5)0.40766 (19)0.0476 (7)
H60.895 (2)1.043 (6)0.361 (2)0.057*
O161.09727 (19)1.2494 (5)0.86089 (16)0.0672 (7)
H161.095 (3)1.274 (8)0.914 (3)0.081*
C190.6800 (3)0.5757 (5)0.4322 (2)0.0578 (8)
H19A0.62930.52270.46480.069*
H19B0.75860.52720.46460.069*
H19C0.65400.51970.36880.069*
C40.6937 (2)0.8813 (6)0.26356 (19)0.0543 (8)
H4A0.68970.72640.24750.065*
H4B0.74210.95380.23240.065*
C130.8437 (2)0.9133 (5)0.74062 (19)0.0403 (6)
C50.7490 (2)0.9080 (5)0.36968 (18)0.0424 (6)
C20.4964 (2)0.8724 (6)0.27778 (19)0.0545 (8)
H2A0.49070.71600.26430.065*
H2B0.41810.93410.25450.065*
C120.7124 (2)0.9575 (6)0.69538 (18)0.0480 (7)
H12A0.67130.89820.73550.058*
H12B0.69891.11480.69020.058*
C10.5491 (2)0.9090 (6)0.38414 (18)0.0478 (7)
H1A0.50050.83430.41450.057*
H1B0.54641.06490.39670.057*
C30.5714 (2)0.9792 (6)0.22882 (18)0.0525 (7)
H30.57591.13750.24160.063*
C200.8878 (2)0.9925 (6)0.91855 (18)0.0491 (7)
C151.0340 (2)0.9922 (6)0.73175 (18)0.0515 (7)
H15A1.07821.09910.70950.062*
H15B1.06590.84710.72910.062*
O200.9438 (2)0.8490 (5)0.96974 (16)0.0725 (7)
C170.9090 (2)1.0545 (5)0.82861 (18)0.0423 (6)
H170.88211.20630.81400.051*
C180.8649 (3)0.6684 (5)0.7625 (2)0.0572 (8)
H18A0.84110.58640.70450.069*
H18B0.82020.62110.80110.069*
H18C0.94670.64380.79560.069*
C210.7945 (3)1.1146 (6)0.9411 (2)0.0607 (9)
H21A0.78541.05520.99740.073*
H21B0.72201.10060.88960.073*
H21C0.81561.26700.95070.073*
C161.0384 (2)1.0466 (6)0.83213 (19)0.0499 (7)
H16A1.08000.92970.87520.060*
C230.3880 (3)1.0067 (10)0.0240 (2)0.0874 (14)
H23A0.31521.08080.05480.105*
H23B0.37600.85070.02960.105*
H23C0.44441.04880.05310.105*
O220.3948 (3)1.2105 (7)0.1139 (2)0.1163 (13)
C220.4323 (3)1.0688 (9)0.0778 (3)0.0753 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.0340 (11)0.0331 (14)0.0464 (14)0.0012 (11)0.0167 (10)0.0049 (11)
C80.0342 (11)0.0366 (14)0.0451 (13)0.0020 (12)0.0130 (9)0.0037 (12)
C140.0378 (11)0.0346 (14)0.0448 (13)0.0043 (12)0.0174 (10)0.0012 (12)
O30.0536 (11)0.0819 (17)0.0461 (11)0.0083 (12)0.0107 (8)0.0084 (12)
C100.0360 (12)0.0372 (15)0.0457 (15)0.0001 (11)0.0131 (11)0.0009 (12)
C70.0384 (12)0.0555 (19)0.0476 (14)0.0065 (13)0.0207 (10)0.0053 (14)
C110.0378 (12)0.0608 (19)0.0543 (16)0.0037 (14)0.0188 (11)0.0079 (15)
C60.0433 (13)0.0574 (18)0.0471 (14)0.0032 (14)0.0219 (11)0.0026 (15)
O160.0647 (13)0.0850 (17)0.0560 (13)0.0251 (13)0.0257 (11)0.0247 (13)
C190.0650 (18)0.0436 (17)0.060 (2)0.0060 (16)0.0153 (15)0.0049 (15)
C40.0445 (14)0.073 (2)0.0461 (15)0.0047 (15)0.0154 (11)0.0016 (15)
C130.0416 (13)0.0353 (14)0.0462 (14)0.0047 (12)0.0177 (11)0.0060 (12)
C50.0380 (12)0.0463 (16)0.0452 (14)0.0044 (12)0.0170 (10)0.0013 (13)
C20.0383 (12)0.070 (2)0.0516 (16)0.0014 (14)0.0097 (11)0.0024 (15)
C120.0409 (12)0.061 (2)0.0485 (14)0.0010 (14)0.0232 (10)0.0060 (15)
C10.0356 (12)0.0598 (18)0.0493 (15)0.0009 (14)0.0159 (10)0.0009 (15)
C30.0498 (14)0.060 (2)0.0459 (15)0.0027 (15)0.0140 (11)0.0012 (15)
C200.0519 (14)0.0553 (18)0.0398 (14)0.0009 (15)0.0150 (11)0.0005 (15)
C150.0400 (12)0.068 (2)0.0484 (15)0.0018 (15)0.0174 (10)0.0080 (16)
O200.0840 (16)0.0777 (18)0.0618 (14)0.0249 (15)0.0324 (11)0.0271 (14)
C170.0457 (13)0.0385 (15)0.0446 (14)0.0067 (13)0.0176 (11)0.0041 (12)
C180.0724 (19)0.0370 (16)0.0589 (17)0.0031 (15)0.0177 (14)0.0073 (14)
C210.0593 (17)0.075 (2)0.0552 (17)0.0035 (17)0.0285 (14)0.0040 (17)
C160.0441 (13)0.0605 (19)0.0449 (15)0.0038 (14)0.0146 (11)0.0034 (14)
C230.0653 (19)0.125 (4)0.062 (2)0.003 (3)0.0077 (15)0.029 (3)
O220.120 (2)0.135 (3)0.091 (2)0.073 (3)0.0321 (17)0.028 (2)
C220.0548 (19)0.103 (3)0.066 (2)0.017 (2)0.0172 (16)0.026 (2)
Geometric parameters (Å, º) top
C9—C111.538 (4)C13—C121.529 (4)
C9—C81.541 (3)C13—C181.529 (5)
C9—C101.550 (4)C13—C171.553 (4)
C9—H90.9800C2—C31.495 (4)
C8—C141.516 (4)C2—C11.526 (4)
C8—C71.520 (4)C2—H2A0.9700
C8—H80.9800C2—H2B0.9700
C14—C151.527 (4)C12—H12A0.9700
C14—C131.541 (4)C12—H12B0.9700
C14—H140.9800C1—H1A0.9700
O3—C221.344 (4)C1—H1B0.9700
O3—C31.455 (4)C3—H30.9800
C10—C51.531 (4)C20—O201.210 (4)
C10—C191.538 (4)C20—C211.484 (4)
C10—C11.545 (4)C20—C171.505 (4)
C7—C61.495 (4)C15—C161.527 (4)
C7—H7A0.9700C15—H15A0.9700
C7—H7B0.9700C15—H15B0.9700
C11—C121.522 (4)C17—C161.551 (4)
C11—H11A0.9700C17—H170.9800
C11—H11B0.9700C18—H18A0.9600
C6—C51.321 (4)C18—H18B0.9600
C6—H61.02 (3)C18—H18C0.9600
O16—C161.418 (4)C21—H21A0.9600
O16—H160.82 (4)C21—H21B0.9600
C19—H19A0.9600C21—H21C0.9600
C19—H19B0.9600C16—H16A0.9800
C19—H19C0.9600C23—C221.490 (5)
C4—C51.517 (4)C23—H23A0.9600
C4—C31.518 (4)C23—H23B0.9600
C4—H4A0.9700C23—H23C0.9600
C4—H4B0.9700O22—C221.187 (5)
C11—C9—C8111.9 (2)C1—C2—H2A109.7
C11—C9—C10113.7 (2)C3—C2—H2B109.7
C8—C9—C10113.1 (2)C1—C2—H2B109.7
C11—C9—H9105.8H2A—C2—H2B108.2
C8—C9—H9105.8C11—C12—C13111.3 (2)
C10—C9—H9105.8C11—C12—H12A109.4
C14—C8—C7110.1 (2)C13—C12—H12A109.4
C14—C8—C9110.3 (2)C11—C12—H12B109.4
C7—C8—C9108.4 (2)C13—C12—H12B109.4
C14—C8—H8109.3H12A—C12—H12B108.0
C7—C8—H8109.3C2—C1—C10115.0 (2)
C9—C8—H8109.3C2—C1—H1A108.5
C8—C14—C15120.4 (2)C10—C1—H1A108.5
C8—C14—C13115.6 (2)C2—C1—H1B108.5
C15—C14—C13103.0 (2)C10—C1—H1B108.5
C8—C14—H14105.5H1A—C1—H1B107.5
C15—C14—H14105.5O3—C3—C2110.5 (2)
C13—C14—H14105.5O3—C3—C4107.7 (2)
C22—O3—C3117.4 (3)C2—C3—C4110.1 (3)
C5—C10—C19108.4 (3)O3—C3—H3109.5
C5—C10—C1108.9 (2)C2—C3—H3109.5
C19—C10—C1110.0 (3)C4—C3—H3109.5
C5—C10—C9109.1 (2)O20—C20—C21121.6 (3)
C19—C10—C9112.0 (3)O20—C20—C17121.6 (3)
C1—C10—C9108.4 (2)C21—C20—C17116.8 (3)
C6—C7—C8113.9 (2)C14—C15—C16105.0 (2)
C6—C7—H7A108.8C14—C15—H15A110.7
C8—C7—H7A108.8C16—C15—H15A110.7
C6—C7—H7B108.8C14—C15—H15B110.7
C8—C7—H7B108.8C16—C15—H15B110.7
H7A—C7—H7B107.7H15A—C15—H15B108.8
C12—C11—C9113.4 (2)C20—C17—C16115.8 (2)
C12—C11—H11A108.9C20—C17—C13115.7 (2)
C9—C11—H11A108.9C16—C17—C13103.5 (2)
C12—C11—H11B108.9C20—C17—H17107.1
C9—C11—H11B108.9C16—C17—H17107.1
H11A—C11—H11B107.7C13—C17—H17107.1
C5—C6—C7125.5 (3)C13—C18—H18A109.5
C5—C6—H6116.0 (15)C13—C18—H18B109.5
C7—C6—H6118.5 (15)H18A—C18—H18B109.5
C16—O16—H16106 (3)C13—C18—H18C109.5
C10—C19—H19A109.5H18A—C18—H18C109.5
C10—C19—H19B109.5H18B—C18—H18C109.5
H19A—C19—H19B109.5C20—C21—H21A109.5
C10—C19—H19C109.5C20—C21—H21B109.5
H19A—C19—H19C109.5H21A—C21—H21B109.5
H19B—C19—H19C109.5C20—C21—H21C109.5
C5—C4—C3110.9 (2)H21A—C21—H21C109.5
C5—C4—H4A109.5H21B—C21—H21C109.5
C3—C4—H4A109.5O16—C16—C15109.7 (3)
C5—C4—H4B109.5O16—C16—C17112.5 (3)
C3—C4—H4B109.5C15—C16—C17105.8 (2)
H4A—C4—H4B108.1O16—C16—H16A109.6
C12—C13—C18110.0 (3)C15—C16—H16A109.6
C12—C13—C14107.3 (2)C17—C16—H16A109.6
C18—C13—C14113.4 (2)C22—C23—H23A109.5
C12—C13—C17116.0 (2)C22—C23—H23B109.5
C18—C13—C17110.8 (2)H23A—C23—H23B109.5
C14—C13—C1798.9 (2)C22—C23—H23C109.5
C6—C5—C4121.3 (3)H23A—C23—H23C109.5
C6—C5—C10122.2 (2)H23B—C23—H23C109.5
C4—C5—C10116.5 (2)O22—C22—O3122.0 (4)
C3—C2—C1110.0 (2)O22—C22—C23126.2 (4)
C3—C2—H2A109.7O3—C22—C23111.8 (4)
C11—C9—C8—C1448.4 (3)C9—C11—C12—C1356.6 (3)
C10—C9—C8—C14178.4 (2)C18—C13—C12—C1167.2 (3)
C11—C9—C8—C7169.0 (2)C14—C13—C12—C1156.6 (3)
C10—C9—C8—C761.0 (3)C17—C13—C12—C11166.0 (2)
C7—C8—C14—C1561.6 (3)C3—C2—C1—C1056.4 (4)
C9—C8—C14—C15178.8 (2)C5—C10—C1—C246.8 (4)
C7—C8—C14—C13173.6 (2)C19—C10—C1—C271.8 (4)
C9—C8—C14—C1354.0 (3)C9—C10—C1—C2165.5 (3)
C11—C9—C10—C5177.8 (2)C22—O3—C3—C279.1 (4)
C8—C9—C10—C548.7 (3)C22—O3—C3—C4160.6 (3)
C11—C9—C10—C1957.7 (3)C1—C2—C3—O3179.0 (3)
C8—C9—C10—C1971.4 (3)C1—C2—C3—C460.2 (4)
C11—C9—C10—C163.8 (3)C5—C4—C3—O3178.5 (3)
C8—C9—C10—C1167.1 (2)C5—C4—C3—C257.9 (4)
C14—C8—C7—C6161.7 (2)C8—C14—C15—C16165.4 (3)
C9—C8—C7—C641.0 (3)C13—C14—C15—C1634.8 (3)
C8—C9—C11—C1251.5 (3)O20—C20—C17—C1636.5 (4)
C10—C9—C11—C12178.8 (2)C21—C20—C17—C16144.0 (3)
C8—C7—C6—C513.0 (4)O20—C20—C17—C1384.9 (3)
C8—C14—C13—C1257.6 (3)C21—C20—C17—C1394.6 (3)
C15—C14—C13—C12168.9 (2)C12—C13—C17—C2074.9 (3)
C8—C14—C13—C1864.0 (3)C18—C13—C17—C2051.5 (3)
C15—C14—C13—C1869.4 (3)C14—C13—C17—C20170.8 (2)
C8—C14—C13—C17178.6 (2)C12—C13—C17—C16157.4 (2)
C15—C14—C13—C1748.0 (3)C18—C13—C17—C1676.3 (3)
C7—C6—C5—C4179.5 (3)C14—C13—C17—C1643.0 (3)
C7—C6—C5—C101.0 (5)C14—C15—C16—O16114.3 (3)
C3—C4—C5—C6129.7 (3)C14—C15—C16—C177.2 (3)
C3—C4—C5—C1051.7 (4)C20—C17—C16—O1689.8 (3)
C19—C10—C5—C6103.8 (3)C13—C17—C16—O16142.5 (2)
C1—C10—C5—C6136.6 (3)C20—C17—C16—C15150.4 (3)
C9—C10—C5—C618.4 (4)C13—C17—C16—C1522.7 (3)
C19—C10—C5—C474.8 (3)C3—O3—C22—O222.4 (5)
C1—C10—C5—C444.8 (3)C3—O3—C22—C23177.4 (3)
C9—C10—C5—C4163.0 (2)C19—C10—C13—C183.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O20i0.82 (4)2.01 (4)2.817 (4)169 (3)
Symmetry code: (i) x+2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC23H34O4
Mr374.50
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.110 (9), 6.084 (3), 15.024 (11)
β (°) 109.54 (11)
V3)1043.1 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.25 × 0.12
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5099, 2553, 1631
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.00
No. of reflections2553
No. of parameters254
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, HELENA (Spek, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
C10—C51.531 (4)C4—C51.517 (4)
C6—C51.321 (4)O22—C221.187 (5)
O20—C20—C17—C1384.9 (3)C3—O3—C22—O222.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O20i0.82 (4)2.01 (4)2.817 (4)169 (3)
Symmetry code: (i) x+2, y+1/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds