Download citation
Download citation
link to html
In the title compound, [Co(C2H6NS)(C2H8N2)2](NO3)2, the CoIII atom has a slightly distorted octahedral geometry, coordinated by one 2-amino­ethane­thiol­ate and two ethyl­enedi­amine ligands. The three five-membered chelate rings adopt a gauche conformation with the unfavoured (lel)2(ob) form, which is ascribed to hydrogen bonds between the amine groups in the complex cation and the nitrate counter-anions [N...O 2.900 (3)–3.378 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101002773/jz1442sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101002773/jz1442Isup2.hkl
Contains datablock I

CCDC reference: 164631

Comment top

It is recognized that mononuclear cobalt(III) complexes with 2-aminoethanethiolate (aet) can function as effective S-donating ligands toward a variety of metal ions to form S-bridged polynuclear complexes (Elder et al., 1980; Konno et al., 1998, 1999). Our recent studies have shown that the structures of these polynuclear complexes can be made to vary by changes in the counteranions (Tokuda et al., 2000; Konno et al., 2000). In order to elucidate this role of the counteranions in the control of S-bridged polynuclear structures, it is desirable to investigate the crystal structures of mononuclear aet complexes by changing the counteranions. Thus, we prepared single crystals of the title complex, [Co(aet)(en)2](NO3)2, (I), and its structure is herein compared with the known structure of [Co(aet)(en)2](SCN)2 (Elder et al., 1973). \sch

The X-ray structural analysis of (I) confirmed the presence of a divalent complex cation, [Co(aet)(en)2]2+, and two nitrate anions. The space group P21/n indicates that the crystal contains a racemic pair (Δ and Λ) of the chiral complex cation. In the cation of (I), the Co atom exhibits a slightly distorted octahedral geometry, coordinated by one S and five N atoms from one aet and two en ligands [trans N—Co—N 174.9 (1) and 176.9 (1)°, and trans N—Co—S 175.78 (7)°; Fig. 1]. The Co—Ntrans(S) bond distance [Co—N5 2.022 (2) Å] is ca 0.05 Å longer than the four Co—Ncis(S) distances [1.958 (2)–1.976 (2) Å, average 1.967 (2) Å], associated with the trans influence of the thiolato S donor atom (Elder et al., 1973; Dickman et al., 1980). A similar difference of 0.04 Å was observed for the trans influence in [Co(aet)(en)2](SCN)2 (Elder et al., 1973). However, the Co—S [2.2494 (8) Å] and Co—Ntrans(S) distances in (I) are longer than those in [Co(aet)(en)2](SCN)2 [Co—S 2.226 (2) Å, Co—Ntrans(S) 2.001 (5) Å, average Co—Ncis(S) 1.960 (9) Å].

The aet and en chelate rings in (I) have a gauche conformation with the lel, lel and ob forms: λ, λ and δ for the Δ isomer, and δ, δ and λ for the Λ isomer. This is distinct from the (lel)3 form found in [Co(aet)(en)2](SCN)2 (Elder et al., 1973). It has been postulated that the (lel)3 form is the most stable for the isolated complex cation, but hydrogen bonds could lead to the formation of other, less favoured, forms (Hawkins, 1971). Thus, the (lel)2(ob) form found in the cation of (I) can be ascribed to the hydrogen-bonding interactions with the nitrate anions (see below), taking into account the fact that only weak hydrogen bonds exist in [Co(aet)(en)2](SCN)2 (Elder et al., 1973).

All the amine H atoms of the aet and en ligands, except H5, are involved in hydrogen bonds with nitrate O atoms in the crystal [N···O 2.900 (3)–3.378 (3) Å]. Additionally, atoms H3 and H8 are hydrogen-bonded to two O acceptors to form three-centre bonds (Table 2). All the nitrate O atoms participate in the hydrogen bonds, which completes a three-dimensional hydrogen-bond network.

Related literature top

For related literature, see: Dickman et al. (1980); Elder (1980); Elder et al. (1973); Hawkins (1971); Konno et al. (1998, 1999, 2000); Nosco & Deutsch (1982); Tokuda et al. (2000).

Experimental top

The title complex was prepared by a method similar to that used for [Co(aet)(en)2](ClO4)2 (Nosco & Deutsch, 1982). To a deaerated solution containing cobalt(II) nitrate hexahydrate (5.91 g, 20.3 mmol) in water (15 ml) was added a deaerated solution containing cystamine dihydrochloride (2.28 g, 10 mmol) and ethylenediamine (3.75 ml, 56 mmol) in water (30 ml). The mixture was stirred at room temperature for 30 min under a nitrogen atmosphere, followed by the addition of a saturated aqueous solution of NaNO3 (70 ml). After the reaction, the mixture was allowed to stand in a refrigerator for 1 d. The resulting black crystals of (I) were collected by filtration and recrystallized from water by adding several drops of a saturated aqueous solution of NaNO3 (yield 5.28 g, 82.1%).

Refinement top

H atoms bonded to C were placed at calculated positions and refined with isotropic displacement parameters and a riding model (C—H distances?). H atoms bonded to N were refined freely.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The ORTEP (Johnson, 1965) drawing of the cation of (I). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) top
Crystal data top
[Co(C2H6NS)(C2H8N2)2](NO3)2F(000) = 792.00
Mr = 379.28Dx = 1.659 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 9.509 (1) ÅCell parameters from 25 reflections
b = 12.824 (1) Åθ = 14.5–15.0°
c = 12.635 (1) ŵ = 1.31 mm1
β = 99.780 (8)°T = 296 K
V = 1518.4 (3) Å3Polyhedron, black
Z = 40.35 × 0.25 × 0.18 mm
Data collection top
Rigaku AFC-7S
diffractometer
2452 reflections with I > 2σ(I)
Radiation source: Rigaku sealed tubeRint = 0.017
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω/2θ scansh = 012
Absorption correction: ψ-scan
(North et al., 1968)
k = 016
Tmin = 0.688, Tmax = 0.770l = 1616
3862 measured reflections3 standard reflections every 150 reflections
3650 independent reflections intensity decay: 0.6%
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo) + 0.00038|Fo|2]
S = 1.11(Δ/σ)max = 0.001
2726 reflectionsΔρmax = 0.30 e Å3
266 parametersΔρmin = 0.29 e Å3
Crystal data top
[Co(C2H6NS)(C2H8N2)2](NO3)2V = 1518.4 (3) Å3
Mr = 379.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.509 (1) ŵ = 1.31 mm1
b = 12.824 (1) ÅT = 296 K
c = 12.635 (1) Å0.35 × 0.25 × 0.18 mm
β = 99.780 (8)°
Data collection top
Rigaku AFC-7S
diffractometer
2452 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.688, Tmax = 0.7703 standard reflections every 150 reflections
3862 measured reflections intensity decay: 0.6%
3650 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.30 e Å3
2726 reflectionsΔρmin = 0.29 e Å3
266 parameters
Special details top

Refinement. Refinement based on F against all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F, conventional R-factors (R) are calculated on F, with F set to zero for negative F. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. thus the refinement was done using all reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.18501 (4)0.22937 (3)0.52177 (3)0.02841 (9)
S10.07823 (8)0.14295 (6)0.37497 (6)0.0398 (2)
N10.3590 (3)0.1487 (2)0.5133 (2)0.0374 (7)
N20.0061 (3)0.3024 (2)0.5289 (2)0.0358 (6)
N30.1156 (3)0.1248 (2)0.6155 (2)0.0391 (7)
N40.2442 (3)0.3426 (2)0.4344 (2)0.0357 (6)
N50.2913 (3)0.3112 (2)0.6471 (2)0.0372 (6)
C10.2416 (4)0.0980 (3)0.3346 (3)0.0482 (9)
C20.3433 (4)0.0631 (3)0.4320 (3)0.0467 (9)
C30.0586 (4)0.2580 (3)0.6172 (3)0.0437 (8)
C40.0393 (4)0.1424 (3)0.6126 (3)0.0472 (9)
C50.2988 (4)0.4330 (2)0.5032 (3)0.0425 (8)
C60.3824 (3)0.3898 (3)0.6063 (3)0.0440 (8)
O110.4899 (3)0.0069 (2)0.8726 (2)0.0575 (7)
O120.3550 (3)0.0258 (2)0.7211 (2)0.0599 (7)
O130.4982 (3)0.1048 (2)0.7370 (2)0.0569 (7)
N110.4468 (3)0.0280 (2)0.7765 (2)0.0385 (6)
O210.2379 (2)0.1914 (2)0.8526 (2)0.0641 (8)
O220.0178 (3)0.1674 (3)0.8602 (3)0.091 (1)
O230.1396 (4)0.2672 (3)0.9731 (3)0.107 (1)
N120.1324 (3)0.2090 (3)0.8955 (2)0.0540 (9)
H10.424 (4)0.189 (3)0.501 (3)0.055 (9)*
H20.391 (4)0.125 (3)0.572 (3)0.059 (10)*
H30.018 (3)0.364 (2)0.540 (2)0.025 (7)*
H40.054 (4)0.297 (2)0.467 (3)0.045 (8)*
H50.133 (4)0.057 (3)0.595 (3)0.066 (10)*
H60.167 (4)0.139 (3)0.684 (3)0.061 (9)*
H70.314 (3)0.322 (2)0.399 (2)0.041 (8)*
H80.175 (4)0.362 (3)0.385 (3)0.053 (9)*
H90.230 (3)0.344 (3)0.681 (2)0.045 (9)*
H100.342 (4)0.273 (3)0.699 (3)0.051 (9)*
H110.220 (4)0.041 (3)0.282 (3)0.0577*
H120.286 (4)0.149 (3)0.303 (3)0.0577*
H130.440 (4)0.050 (3)0.413 (2)0.0559*
H140.305 (4)0.001 (3)0.465 (3)0.0559*
H150.005 (4)0.290 (3)0.683 (3)0.0523*
H160.148 (4)0.280 (3)0.611 (3)0.0523*
H170.085 (4)0.110 (3)0.539 (3)0.0567*
H180.068 (4)0.107 (3)0.672 (3)0.0567*
H190.357 (3)0.474 (3)0.469 (2)0.0512*
H200.217 (4)0.472 (3)0.520 (2)0.0512*
H210.407 (4)0.444 (3)0.653 (3)0.0528*
H220.473 (4)0.361 (3)0.593 (3)0.0528*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0275 (2)0.0274 (2)0.0299 (2)0.0008 (1)0.0034 (1)0.0008 (1)
S10.0406 (4)0.0382 (4)0.0377 (4)0.0011 (3)0.0014 (3)0.0064 (3)
N10.033 (1)0.041 (1)0.037 (1)0.006 (1)0.005 (1)0.006 (1)
N20.032 (1)0.029 (1)0.046 (1)0.000 (1)0.005 (1)0.005 (1)
N30.043 (1)0.031 (1)0.045 (1)0.000 (1)0.011 (1)0.003 (1)
N40.035 (1)0.038 (1)0.033 (1)0.000 (1)0.003 (1)0.0046 (10)
N50.037 (1)0.042 (1)0.032 (1)0.004 (1)0.003 (1)0.001 (1)
C10.053 (2)0.052 (2)0.042 (2)0.001 (2)0.014 (1)0.010 (1)
C20.046 (2)0.044 (2)0.051 (2)0.012 (1)0.012 (1)0.005 (1)
C30.034 (1)0.044 (2)0.056 (2)0.001 (1)0.016 (1)0.005 (1)
C40.043 (2)0.042 (2)0.059 (2)0.009 (1)0.017 (2)0.000 (1)
C50.044 (2)0.036 (2)0.048 (2)0.009 (1)0.009 (1)0.001 (1)
C60.037 (2)0.047 (2)0.046 (2)0.010 (1)0.002 (1)0.004 (1)
O110.079 (2)0.047 (1)0.040 (1)0.009 (1)0.007 (1)0.0111 (10)
O120.058 (1)0.058 (1)0.057 (1)0.015 (1)0.008 (1)0.004 (1)
O130.070 (2)0.050 (1)0.049 (1)0.011 (1)0.005 (1)0.014 (1)
N110.045 (1)0.033 (1)0.037 (1)0.003 (1)0.004 (1)0.0022 (10)
O210.040 (1)0.103 (2)0.052 (1)0.005 (1)0.016 (1)0.000 (1)
O220.046 (2)0.141 (3)0.088 (2)0.015 (2)0.019 (2)0.010 (2)
O230.067 (2)0.168 (4)0.084 (2)0.021 (2)0.007 (2)0.050 (2)
N120.040 (2)0.082 (2)0.041 (1)0.016 (1)0.008 (1)0.009 (1)
Geometric parameters (Å, º) top
Co1—S12.2494 (8)O12—N111.233 (3)
Co1—N11.969 (3)O13—N111.241 (3)
Co1—N21.958 (2)O21—N121.240 (3)
Co1—N31.976 (2)O22—N121.228 (4)
Co1—N41.963 (2)O23—N121.225 (4)
Co1—N52.022 (2)N1—H10.84 (3)
S1—C11.810 (3)N1—H20.81 (3)
N1—C21.495 (4)N2—H30.81 (2)
N2—C31.478 (4)N2—H40.89 (3)
N3—C41.484 (4)N3—H50.92 (4)
N4—C51.489 (4)N3—H60.94 (3)
N5—C61.478 (4)N4—H70.91 (3)
C1—C21.499 (5)N4—H80.87 (3)
C3—C41.497 (4)N5—H90.89 (3)
C5—C61.512 (4)N5—H100.90 (3)
O11—N111.244 (3)
S1—Co1—N187.85 (8)C6—N5—H10111 (2)
S1—Co1—N289.97 (8)H9—N5—H10103 (2)
S1—Co1—N390.57 (8)S1—C1—C2109.2 (2)
S1—Co1—N491.90 (7)S1—C1—H11109 (2)
S1—Co1—N5175.78 (7)S1—C1—H12112 (2)
N1—Co1—N2176.9 (1)C2—C1—H11111 (1)
N1—Co1—N392.6 (1)C2—C1—H12107 (2)
N1—Co1—N492.0 (1)H11—C1—H12107 (2)
N1—Co1—N590.1 (1)N1—C2—C1108.7 (3)
N2—Co1—N385.2 (1)N1—C2—H13107 (1)
N2—Co1—N490.3 (1)N1—C2—H14107 (1)
N2—Co1—N592.2 (1)C1—C2—H13110 (1)
N3—Co1—N4174.9 (1)C1—C2—H14110 (1)
N3—Co1—N593.2 (1)H13—C2—H14112 (2)
N4—Co1—N584.5 (1)N2—C3—C4106.4 (2)
Co1—S1—C195.8 (1)N2—C3—H15104 (1)
Co1—N1—C2115.9 (2)N2—C3—H16109 (2)
Co1—N1—H1109 (2)C4—C3—H15113 (1)
Co1—N1—H2109 (2)C4—C3—H16115 (2)
C2—N1—H1108 (2)H15—C3—H16107 (2)
C2—N1—H2108 (2)N3—C4—C3106.1 (3)
H1—N1—H2103 (3)N3—C4—H17103 (1)
Co1—N2—C3109.1 (2)N3—C4—H18108 (2)
Co1—N2—H3112 (2)C3—C4—H17113 (1)
Co1—N2—H4110 (2)C3—C4—H18112 (2)
C3—N2—H3108 (1)H17—C4—H18111 (2)
C3—N2—H4110 (2)N4—C5—C6107.3 (3)
H3—N2—H4105 (2)N4—C5—H19110 (1)
Co1—N3—C4108.2 (2)N4—C5—H20108 (1)
Co1—N3—H5112 (2)C6—C5—H19110 (1)
Co1—N3—H6104 (2)C6—C5—H20108 (1)
C4—N3—H5111 (2)H19—C5—H20111 (2)
C4—N3—H6110 (2)N5—C6—C5107.3 (2)
H5—N3—H6110 (3)N5—C6—H21112 (2)
Co1—N4—C5110.7 (2)N5—C6—H22112 (1)
Co1—N4—H7111 (1)C5—C6—H21108 (2)
Co1—N4—H8111 (2)C5—C6—H22110 (1)
C5—N4—H7107 (1)H21—C6—H22104 (2)
C5—N4—H8110 (2)O11—N11—O12121.1 (3)
H7—N4—H8104 (2)O11—N11—O13118.6 (2)
Co1—N5—C6109.0 (2)O12—N11—O13120.4 (3)
Co1—N5—H9109 (2)O21—N12—O22119.7 (3)
Co1—N5—H10115 (2)O21—N12—O23121.5 (3)
C6—N5—H9108 (2)O22—N12—O23118.8 (3)
S1—C1—C2—N152.7 (3)N4—C5—C6—N550.1 (3)
N2—C3—C4—N354.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O130.81 (3)2.17 (3)2.964 (3)163 (3)
N2—H3···O11i0.81 (2)2.15 (2)2.900 (3)154 (2)
N2—H3···O11ii0.81 (2)2.65 (2)3.130 (3)119 (2)
N4—H8···O11ii0.87 (3)2.42 (3)3.088 (3)134 (2)
N4—H8···O13ii0.87 (3)2.33 (3)3.189 (3)172 (3)
N5—H9···O12i0.89 (3)2.30 (3)3.141 (3)157 (2)
N5—H10···O130.90 (3)2.61 (3)3.378 (3)143 (2)
N1—H1···O23iii0.84 (3)2.21 (3)3.000 (4)156 (3)
N2—H4···O21ii0.89 (3)2.25 (3)3.089 (3)157 (3)
N3—H6···O210.94 (3)2.22 (3)3.142 (3)165 (3)
N4—H7···O22iii0.91 (3)2.08 (3)2.914 (4)152 (2)
C4—H18···O220.96 (3)2.50 (3)3.099 (5)120 (2)
C3—H16···O23ii0.89 (4)2.51 (4)3.143 (5)129 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C2H6NS)(C2H8N2)2](NO3)2
Mr379.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.509 (1), 12.824 (1), 12.635 (1)
β (°) 99.780 (8)
V3)1518.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.35 × 0.25 × 0.18
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.688, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
3862, 3650, 2452
Rint0.017
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.041, 1.11
No. of reflections2726
No. of parameters266
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1985), SIR92 (Altomare et al., 1994), TEXSAN.

Selected geometric parameters (Å, º) top
Co1—S12.2494 (8)Co1—N31.976 (2)
Co1—N11.969 (3)Co1—N41.963 (2)
Co1—N21.958 (2)Co1—N52.022 (2)
S1—Co1—N187.85 (8)N1—Co1—N590.1 (1)
S1—Co1—N289.97 (8)N2—Co1—N385.2 (1)
S1—Co1—N390.57 (8)N2—Co1—N490.3 (1)
S1—Co1—N491.90 (7)N2—Co1—N592.2 (1)
S1—Co1—N5175.78 (7)N3—Co1—N4174.9 (1)
N1—Co1—N2176.9 (1)N3—Co1—N593.2 (1)
N1—Co1—N392.6 (1)N4—Co1—N584.5 (1)
N1—Co1—N492.0 (1)
S1—C1—C2—N152.7 (3)N4—C5—C6—N550.1 (3)
N2—C3—C4—N354.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O130.81 (3)2.17 (3)2.964 (3)163 (3)
N2—H3···O11i0.81 (2)2.15 (2)2.900 (3)154 (2)
N2—H3···O11ii0.81 (2)2.65 (2)3.130 (3)119 (2)
N4—H8···O11ii0.87 (3)2.42 (3)3.088 (3)134 (2)
N4—H8···O13ii0.87 (3)2.33 (3)3.189 (3)172 (3)
N5—H9···O12i0.89 (3)2.30 (3)3.141 (3)157 (2)
N5—H10···O130.90 (3)2.61 (3)3.378 (3)143 (2)
N1—H1···O23iii0.84 (3)2.21 (3)3.000 (4)156 (3)
N2—H4···O21ii0.89 (3)2.25 (3)3.089 (3)157 (3)
N3—H6···O210.94 (3)2.22 (3)3.142 (3)165 (3)
N4—H7···O22iii0.91 (3)2.08 (3)2.914 (4)152 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds