Download citation
Download citation
link to html
(Cyclo­hexyl­methyl­oxy­methyl)(1H-imidazol-4-io­methyl)-(S)-ammonium dichloride, C13H25N3O+·2Cl-, and (4-bromo­benzyl)(1H-imidazol-4-io­methyl)-(S)-ammonium dichloride, C13H18BrN3O+·2Cl-, are model compounds with different biological activities for evaluation of the hist­amine H3-receptor activation mechanism. Both title compounds occur in almost similar extended conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005291/qb0202sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005291/qb0202Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005291/qb0202IIsup3.hkl
Contains datablock II

CCDC references: 145654; 145655

Comment top

The histamine H3-receptor is located on neurones of the central and autonomic nervous system where it regulates the release of histamine and some other neurotransmitters (Arrang et al., 1983; Schlicker et al., 1994; Hill et al., 1997). Many possible therapeutic targets for H3-receptor ligands have been suggested, such as, Alzheimer's disease, narcolepsy, schizophrenia and epilepsy (Leurs et al., 1995; Stark et al., 1996).

2(S)-Amino-3-[1H-imidazol-4(5)-yl]propyl cyclohexylmethyl ether dihydrochloride, (I), and 2(S)-amino-3-(1H-imidazol-4(5)-yl)propyl 4-bromobenzyl ether dihydrochloride, (II), were synthesized by Kovalainen et al. (1999) for evaluation of the histamine H3-receptor activation mechanism. The crystal structures of (I) and (II) were determined to reveal the absolute configuration, the low-energy conformation, and to further evaluate histamine H3-receptor–ligand interactions.

Both compounds crystallize in the orthorhombic system with one cation and two chloride ions in the asymmetric unit. The imidazole ring and amino group are protonated in the both structures. For compound (I), the non-bonded intramolecular distances N3···C14 and N3···O9 are 9.772 (4) and 5.545 (3) Å, respectively, and for compound (II), the distances N3···C14, N3···O9 and N3···Br1 are 9.015 (5), 5.406 (4) and 10.525 (3) Å, respectively.

Experimental top

The title compounds were synthesized by the coupling of N,N-diprotected L-histidinol alkoxide and corresponding halides in Williamson ether syntehesis (Kovalainen et al., 1999). Colorless crystals suitable for X-ray studies were obtained by diffusion method from propanol/ethyl acetate for (I) and 2-propanol/ethanol/hexane for (II)

Refinement top

In the refinements, 1744 and 1724 Friedel reflections were used for (I) and (II), respectively. The H atoms were placed at calculated positions and refined as riding using SHELXL97 (Sheldrick, 1997) defaults; N—H = 0.86, C—H = 0.93 and CH(methyl) = 0.96 Å.

Computing details top

Data collection: COLLECT (Nonius, 1998) for (I); Collect (Nonius, 1998) for (II). For both compounds, cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) and WinGX (Farrugia, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and WinGX.

(I) 2(S)-amino-3-(1H-imidazol-4(5)-yl)propyl cyclohexylmethyl ether dihydrochloride top
Crystal data top
C13H25N3O2+·2ClDx = 1.186 Mg m3
Mr = 310.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from all reflections
a = 7.8270 (4) Åθ = 3.1–27.9°
b = 12.7936 (8) ŵ = 0.37 mm1
c = 17.3523 (12) ÅT = 173 K
V = 1737.58 (18) Å3Block, colourless
Z = 40.25 × 0.20 × 0.10 mm
F(000) = 664
Data collection top
Nonius KappaCCD
diffractometer
4090 independent reflections
Radiation source: fine-focus sealed tube2791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ scansθmax = 27.9°, θmin = 3.1°
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
h = 910
Tmin = 0.913, Tmax = 0.964k = 1216
10810 measured reflectionsl = 2220
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0192P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4090 reflectionsΔρmax = 0.20 e Å3
173 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (5)
Crystal data top
C13H25N3O2+·2ClV = 1737.58 (18) Å3
Mr = 310.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8270 (4) ŵ = 0.37 mm1
b = 12.7936 (8) ÅT = 173 K
c = 17.3523 (12) Å0.25 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
4090 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
2791 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.964Rint = 0.062
10810 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.084Δρmax = 0.20 e Å3
S = 1.01Δρmin = 0.25 e Å3
4090 reflectionsAbsolute structure: Flack (1983)
173 parametersAbsolute structure parameter: 0.11 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structures were solved by direct methods followed by Fourier synthesis and refined by anisotropic full-matrix least-squares methods for all non-H atoms. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.18262 (7)0.31574 (5)0.41537 (4)0.03577 (16)
Cl20.62933 (8)0.14581 (5)0.28773 (4)0.04348 (18)
N10.7369 (2)0.57440 (16)0.24749 (12)0.0356 (5)
H10.63250.58900.23210.043*
C20.8767 (3)0.62128 (19)0.22229 (15)0.0409 (6)
H20.88170.67580.18520.049*
N31.0087 (3)0.57846 (17)0.25822 (13)0.0391 (5)
H31.11650.59570.25120.047*
C40.9510 (3)0.5030 (2)0.30825 (15)0.0362 (6)
H41.01930.46120.34140.043*
C50.7786 (3)0.49927 (19)0.30136 (13)0.0298 (6)
C60.6458 (3)0.43096 (19)0.33603 (13)0.0332 (6)
H6A0.61240.37670.29820.040*
H6B0.54320.47330.34780.040*
C70.7086 (3)0.37780 (17)0.41023 (13)0.0297 (5)
H70.82250.34530.39990.036*
C80.7261 (3)0.45179 (19)0.47761 (14)0.0340 (6)
H8A0.77820.41540.52210.041*
H8B0.79950.51180.46350.041*
O90.5609 (2)0.48645 (14)0.49637 (10)0.0426 (5)
C100.5574 (3)0.5645 (2)0.55545 (15)0.0411 (7)
H10A0.60300.63140.53530.049*
H10B0.62910.54240.59950.049*
C110.3753 (3)0.57853 (19)0.58105 (14)0.0374 (6)
H110.33240.50910.59910.045*
C120.2590 (3)0.6153 (2)0.51680 (16)0.0454 (7)
H12A0.26270.56430.47390.054*
H12B0.30040.68330.49700.054*
C130.0750 (3)0.6271 (2)0.54475 (18)0.0545 (8)
H13A0.00430.65580.50250.065*
H13B0.02910.55740.55840.065*
C140.0623 (4)0.6989 (2)0.61460 (17)0.0571 (8)
H14A0.09270.77120.59940.069*
H14B0.05670.69940.63390.069*
C150.1809 (3)0.6624 (2)0.67784 (15)0.0499 (7)
H15A0.14320.59310.69660.060*
H15B0.17540.71200.72160.060*
C160.3644 (3)0.6549 (2)0.64918 (14)0.0439 (6)
H16A0.43930.63040.69150.053*
H16B0.40450.72490.63280.053*
N170.5848 (2)0.29315 (15)0.43031 (11)0.0318 (5)
H17A0.47760.32050.43340.048*
H17B0.61400.26460.47650.048*
H17C0.58720.24290.39320.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0300 (3)0.0386 (4)0.0387 (3)0.0019 (2)0.0020 (3)0.0042 (3)
Cl20.0269 (3)0.0462 (4)0.0573 (4)0.0040 (3)0.0011 (3)0.0137 (3)
N10.0276 (11)0.0380 (13)0.0411 (12)0.0031 (9)0.0041 (10)0.0109 (11)
C20.0387 (14)0.0388 (16)0.0453 (15)0.0013 (13)0.0023 (14)0.0092 (12)
N30.0271 (10)0.0405 (14)0.0497 (14)0.0016 (10)0.0053 (10)0.0075 (11)
C40.0286 (13)0.0379 (16)0.0420 (16)0.0002 (11)0.0004 (12)0.0100 (13)
C50.0270 (13)0.0303 (14)0.0319 (14)0.0034 (10)0.0021 (11)0.0019 (11)
C60.0267 (12)0.0372 (15)0.0357 (13)0.0008 (11)0.0040 (12)0.0046 (11)
C70.0210 (11)0.0307 (14)0.0372 (13)0.0025 (9)0.0012 (11)0.0024 (12)
C80.0287 (13)0.0372 (16)0.0362 (14)0.0012 (11)0.0032 (11)0.0030 (12)
O90.0311 (9)0.0452 (12)0.0516 (11)0.0001 (8)0.0019 (9)0.0177 (9)
C100.0450 (14)0.0403 (17)0.0380 (15)0.0008 (12)0.0032 (13)0.0076 (13)
C110.0415 (13)0.0333 (14)0.0376 (14)0.0023 (12)0.0001 (14)0.0050 (12)
C120.0474 (16)0.0424 (17)0.0465 (16)0.0013 (12)0.0043 (14)0.0092 (14)
C130.0390 (15)0.056 (2)0.068 (2)0.0031 (13)0.0078 (14)0.0158 (16)
C140.0445 (15)0.055 (2)0.072 (2)0.0054 (14)0.0055 (16)0.0110 (17)
C150.0599 (17)0.0390 (17)0.0507 (16)0.0018 (14)0.0095 (15)0.0079 (14)
C160.0519 (15)0.0394 (16)0.0404 (14)0.0014 (14)0.0041 (14)0.0051 (13)
N170.0264 (10)0.0325 (12)0.0365 (12)0.0020 (8)0.0004 (9)0.0008 (9)
Geometric parameters (Å, º) top
N1—C21.322 (3)C8—O91.405 (3)
N1—C51.380 (3)O9—C101.432 (3)
C2—N31.325 (3)C10—C111.504 (3)
N3—C41.375 (3)C11—C121.514 (3)
C4—C51.356 (3)C11—C161.536 (3)
C5—C61.486 (3)C12—C131.527 (4)
C6—C71.537 (3)C13—C141.524 (4)
C7—N171.495 (3)C14—C151.511 (4)
C7—C81.511 (3)C15—C161.523 (4)
C2—N1—C5110.1 (2)O9—C8—C7107.09 (19)
N1—C2—N3107.6 (2)C8—O9—C10113.79 (18)
C2—N3—C4109.4 (2)O9—C10—C11108.20 (19)
C5—C4—N3107.2 (2)C10—C11—C12112.9 (2)
C4—C5—N1105.7 (2)C10—C11—C16110.8 (2)
C4—C5—C6133.0 (2)C12—C11—C16109.6 (2)
N1—C5—C6121.23 (19)C11—C12—C13111.3 (2)
C5—C6—C7112.04 (18)C14—C13—C12112.0 (2)
N17—C7—C8109.40 (18)C15—C14—C13110.5 (2)
N17—C7—C6107.95 (17)C14—C15—C16111.2 (2)
C8—C7—C6113.6 (2)C15—C16—C11110.1 (2)
C5—N1—C2—N30.1 (3)C7—C8—O9—C10174.99 (19)
N1—C2—N3—C40.6 (3)C8—O9—C10—C11168.7 (2)
C2—N3—C4—C50.9 (3)O9—C10—C11—C1261.3 (3)
N3—C4—C5—N10.7 (3)O9—C10—C11—C16175.3 (2)
N3—C4—C5—C6175.9 (2)C10—C11—C12—C13179.2 (2)
C2—N1—C5—C40.4 (3)C16—C11—C12—C1356.7 (3)
C2—N1—C5—C6176.8 (2)C11—C12—C13—C1455.0 (3)
C4—C5—C6—C721.0 (4)C12—C13—C14—C1554.0 (3)
N1—C5—C6—C7162.7 (2)C13—C14—C15—C1656.1 (3)
C5—C6—C7—N17166.94 (19)C14—C15—C16—C1158.9 (3)
C5—C6—C7—C871.6 (3)C10—C11—C16—C15176.2 (2)
N17—C7—C8—O954.8 (2)C12—C11—C16—C1558.6 (3)
C6—C7—C8—O965.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.882.203.0703 (19)169
N3—H3···Cl2ii0.882.203.067 (2)170
N17—H17A···Cl10.912.333.1713 (17)154
N17—H17B···Cl1iii0.912.213.114 (2)176
N17—H17C···Cl20.912.243.130 (2)167
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1.
(II) 2(S)-amino-3-(1H-imidazol-4(5)-yl)propyl 4-bromobenzyl ether dihydrochloride top
Crystal data top
C13H18BrN3O2+·2ClDx = 1.458 Mg m3
Mr = 383.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from all reflections
a = 7.5530 (2) Åθ = 2.9–27.9°
b = 12.9964 (6) ŵ = 2.66 mm1
c = 17.7800 (9) ÅT = 173 K
V = 1745.32 (13) Å3Block, colourless
Z = 40.50 × 0.10 × 0.10 mm
F(000) = 776
Data collection top
Nonius KappaCCD
diffractometer
4093 independent reflections
Radiation source: fine-focus sealed tube2864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ϕ scansθmax = 27.9°, θmin = 2.9°
Absorption correction: empirical (using intensity measurements)
(Blessing, R. H., 1995)
h = 89
Tmin = 0.350, Tmax = 0.777k = 1714
10776 measured reflectionsl = 2317
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.023P)2 + 0.7817P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4093 reflectionsΔρmax = 0.34 e Å3
182 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (10)
Crystal data top
C13H18BrN3O2+·2ClV = 1745.32 (13) Å3
Mr = 383.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5530 (2) ŵ = 2.66 mm1
b = 12.9964 (6) ÅT = 173 K
c = 17.7800 (9) Å0.50 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
4093 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, R. H., 1995)
2864 reflections with I > 2σ(I)
Tmin = 0.350, Tmax = 0.777Rint = 0.053
10776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090Δρmax = 0.34 e Å3
S = 1.04Δρmin = 0.56 e Å3
4093 reflectionsAbsolute structure: Flack (1983)
182 parametersAbsolute structure parameter: 0.005 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The structures were solved by direct methods followed by Fourier synthesis and refined by anisotropic full-matrix least-squares methods for all non-H atoms. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.28661 (6)0.73206 (4)0.66550 (3)0.05731 (16)
Cl10.87010 (11)0.24151 (8)0.59579 (5)0.0363 (2)
Cl20.64992 (11)0.54709 (7)0.84584 (6)0.0383 (2)
C20.1453 (6)0.5031 (3)0.8229 (3)0.0467 (11)
H20.14220.55350.86160.056*
C40.0644 (5)0.3916 (3)0.7372 (3)0.0362 (10)
H40.00830.35060.70550.043*
C50.2441 (4)0.3941 (3)0.7381 (2)0.0298 (9)
C60.3765 (5)0.3333 (3)0.6952 (2)0.0321 (9)
H6A0.37670.26160.71410.038*
H6B0.49580.36250.70400.038*
C70.3385 (4)0.3326 (3)0.6111 (2)0.0275 (9)
H70.21310.31020.60360.033*
C80.3621 (5)0.4353 (3)0.5733 (2)0.0362 (9)
H8A0.34160.42880.51860.043*
H8B0.27660.48570.59390.043*
C100.5933 (6)0.5489 (3)0.5386 (3)0.0461 (11)
H10A0.50030.60240.53540.055*
H10B0.61420.52140.48740.055*
C110.7618 (5)0.5948 (3)0.5692 (2)0.0389 (10)
C120.7821 (6)0.6129 (3)0.6462 (3)0.0459 (11)
H120.68820.59600.67950.055*
C130.9358 (5)0.6549 (3)0.6748 (3)0.0445 (11)
H130.94840.66650.72730.053*
C141.0709 (5)0.6797 (3)0.6258 (3)0.0398 (11)
C151.0548 (6)0.6643 (3)0.5495 (3)0.0435 (11)
H151.14760.68340.51630.052*
C160.8996 (6)0.6201 (3)0.5221 (3)0.0428 (11)
H160.88870.60720.46970.051*
N10.2900 (4)0.4646 (2)0.79212 (19)0.0389 (8)
H10.39900.48150.80440.047*
N30.0076 (4)0.4607 (3)0.7915 (2)0.0437 (10)
H30.10350.47380.80290.052*
N170.4571 (3)0.2545 (2)0.57478 (17)0.0286 (7)
H17A0.43470.25230.52450.043*
H17B0.43630.19150.59530.043*
H17C0.57220.27230.58250.043*
O90.5377 (3)0.4685 (2)0.58729 (18)0.0411 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0446 (2)0.0638 (3)0.0635 (3)0.0103 (2)0.0040 (2)0.0043 (3)
Cl10.0283 (4)0.0481 (6)0.0327 (5)0.0046 (4)0.0018 (4)0.0014 (5)
Cl20.0287 (4)0.0416 (6)0.0444 (7)0.0023 (4)0.0029 (4)0.0095 (5)
C20.051 (2)0.043 (3)0.046 (3)0.0032 (19)0.007 (2)0.017 (2)
C40.028 (2)0.038 (2)0.043 (3)0.0013 (16)0.0007 (18)0.007 (2)
C50.029 (2)0.031 (2)0.029 (2)0.0011 (14)0.0005 (15)0.0036 (19)
C60.0248 (19)0.037 (2)0.035 (2)0.0032 (16)0.0008 (16)0.0047 (19)
C70.0225 (18)0.027 (2)0.034 (2)0.0030 (13)0.0004 (15)0.0038 (17)
C80.0339 (19)0.037 (2)0.038 (3)0.0017 (17)0.0049 (18)0.0015 (19)
C100.051 (3)0.040 (3)0.047 (3)0.0110 (19)0.001 (2)0.002 (2)
C110.046 (3)0.035 (2)0.035 (3)0.0025 (17)0.0012 (19)0.0039 (19)
C120.049 (2)0.049 (3)0.040 (3)0.012 (2)0.007 (2)0.001 (2)
C130.053 (3)0.039 (3)0.041 (3)0.0062 (19)0.002 (2)0.001 (2)
C140.039 (2)0.035 (3)0.046 (3)0.0023 (17)0.0001 (19)0.001 (2)
C150.045 (2)0.044 (3)0.042 (3)0.0008 (19)0.005 (2)0.003 (2)
C160.049 (3)0.048 (3)0.031 (3)0.0057 (19)0.0024 (19)0.003 (2)
N10.0307 (16)0.044 (2)0.042 (2)0.0033 (16)0.0000 (15)0.0122 (17)
N30.0318 (19)0.050 (2)0.049 (3)0.0070 (15)0.0094 (16)0.009 (2)
N170.0254 (13)0.0289 (19)0.0314 (18)0.0011 (13)0.0008 (12)0.0004 (15)
O90.0375 (15)0.0347 (16)0.051 (2)0.0079 (11)0.0061 (13)0.0075 (15)
Geometric parameters (Å, º) top
Br1—C141.901 (4)C8—O91.416 (4)
C2—N31.303 (5)C10—O91.421 (5)
C2—N11.321 (5)C10—C111.508 (6)
C4—C51.358 (5)C11—C161.376 (6)
C4—N31.387 (5)C11—C121.396 (6)
C5—N11.371 (5)C12—C131.379 (6)
C5—C61.485 (5)C13—C141.380 (6)
C6—C71.523 (6)C14—C151.376 (6)
C7—N171.500 (4)C15—C161.394 (6)
C7—C81.505 (5)
N3—C2—N1108.8 (4)C16—C11—C10120.8 (4)
C5—C4—N3106.6 (4)C12—C11—C10120.9 (4)
C4—C5—N1106.1 (4)C13—C12—C11121.3 (4)
C4—C5—C6130.9 (4)C12—C13—C14118.8 (5)
N1—C5—C6123.0 (3)C15—C14—C13121.5 (4)
C5—C6—C7112.4 (3)C15—C14—Br1119.6 (3)
N17—C7—C8109.7 (3)C13—C14—Br1118.9 (4)
N17—C7—C6108.3 (3)C14—C15—C16118.7 (4)
C8—C7—C6114.2 (3)C11—C16—C15121.4 (4)
O9—C8—C7107.7 (3)C2—N1—C5109.6 (3)
O9—C10—C11108.7 (4)C2—N3—C4109.0 (3)
C16—C11—C12118.3 (4)C8—O9—C10113.2 (3)
N3—C4—C5—N10.5 (5)C12—C13—C14—Br1177.3 (3)
N3—C4—C5—C6176.7 (4)C13—C14—C15—C161.6 (7)
C4—C5—C6—C750.0 (6)Br1—C14—C15—C16176.2 (3)
N1—C5—C6—C7133.3 (4)C12—C11—C16—C151.1 (7)
C5—C6—C7—N17169.7 (3)C10—C11—C16—C15178.8 (4)
C5—C6—C7—C867.8 (4)C14—C15—C16—C111.9 (7)
N17—C7—C8—O965.0 (4)N3—C2—N1—C50.1 (5)
C6—C7—C8—O956.9 (4)C4—C5—N1—C20.2 (5)
O9—C10—C11—C16138.2 (4)C6—C5—N1—C2177.2 (4)
O9—C10—C11—C1241.9 (6)N1—C2—N3—C40.4 (5)
C16—C11—C12—C130.1 (7)C5—C4—N3—C20.6 (5)
C10—C11—C12—C13180.0 (4)C7—C8—O9—C10163.6 (3)
C11—C12—C13—C140.4 (7)C11—C10—O9—C8166.9 (3)
C12—C13—C14—C150.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl20.882.203.075 (3)170
N3—H3···Cl2i0.882.233.081 (3)164
N17—H17A···Cl1ii0.912.203.103 (3)176
N17—H17B···Cl2iii0.912.253.148 (3)171
N17—H17C···Cl10.912.303.146 (3)155
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+1, y1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H25N3O2+·2ClC13H18BrN3O2+·2Cl
Mr310.26383.11
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)173173
a, b, c (Å)7.8270 (4), 12.7936 (8), 17.3523 (12)7.5530 (2), 12.9964 (6), 17.7800 (9)
V3)1737.58 (18)1745.32 (13)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.372.66
Crystal size (mm)0.25 × 0.20 × 0.100.50 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(Blessing, 1995)
Empirical (using intensity measurements)
(Blessing, R. H., 1995)
Tmin, Tmax0.913, 0.9640.350, 0.777
No. of measured, independent and
observed [I > 2σ(I)] reflections
10810, 4090, 2791 10776, 4093, 2864
Rint0.0620.053
(sin θ/λ)max1)0.6580.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.084, 1.01 0.047, 0.090, 1.04
No. of reflections40904093
No. of parameters173182
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.250.34, 0.56
Absolute structureFlack (1983)Flack (1983)
Absolute structure parameter0.11 (5)0.005 (10)

Computer programs: COLLECT (Nonius, 1998), Collect (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), DENZO, SHELXS97 (Sheldrick, 1997) and WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 1997) and WinGX.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds