Skip to main content
Log in

Measurement of thermodynamic equilibria by chromatography

  • Review Papers
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

After a brief recall of the chromatographic principles, the different applications of gas chromatographic measurements of thermodynamic equilibria were reviewed. Gas and liquid chromatographies are now well known and elegant methods for measuring the physicochemical properties and phase equilibrium thermodynamic constants. Although fundamentally a dynamical method and mostly known as a powerful separation technique, chromatography can be schematized by a sucession of equilbria of a chemical species partitioning between a mobile phase and a fixed liquid or solid stationary phase. It can be operated in either infinite dilution or finite concentration conditions and permits to collect a large number of data for calculating molecular interactions for solutes which are either rare or available at the trace level.

Gas chromatography permits the measurement of gas adsorption isotherm, gas-liquid equilibria, molecular diffusion and interaction virials. The modelization of successive partition equuilibria occuring in the chromatographic column leads to rather simple expression of differential enthalpy, entropy, free energy of adsorption or solution, variation of heat capacity, complexation constant, second virial coefficients, gas-solid and gasliquid isotherm and also binary or ternary equilibria. The possibilities of High Performance-Liquid Chromatography to investigate adsorption from solutions and chemical equilibria are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Litlewood, C. S. G. Phillips, D. T. Price, J. Chem. Soc. 1480 (1955).

  2. J. R. Conder, C. L Young, in “Physicochemical Measurement by Gas Chromatography”, Wiley, New York, 1979.

    Google Scholar 

  3. J. Laub, R. L. Pecsok in “Physicochemical Applications of Gas Chromatography”, Wiley, New York, 1978.

    Google Scholar 

  4. D. C. Locke, in “Advances in Chromatography”, Vol. 8,J. C. Giddings, R. A. Keller, eds., Dekker, New York, 1969; pp. 47–89.D. C. Locke, in “Advances in Chromatography”, Vol.14,J. C. Giddings, E. Grushka, J. Cazes, P. R. Brown, eds., Dekker, New York, 1976; pp. 87–198.

    Google Scholar 

  5. C. Horvath, W. R. Melander, in “Chromatography, fundamentals and applications of chromatographic and electrophoretic methods. Part A. Fundamentals and techniques”, Vol. 22A. E. Heftmann, ed., J. of Chromatography Library, Elsevier, Amsterdam, 1983, pp. A27-A135.

    Google Scholar 

  6. P. Valentin, G. Guiohon, J. Chromatogr Sci.14, 132 (1976).

    CAS  Google Scholar 

  7. A. V. Kiselev, Y. I. Yashi, in “La chromatographie Gas-Solide”, Masson, Paris, 1969.

    Google Scholar 

  8. N. A. Chuduk, Y. A. Eltekov, A. V. Kiselev, J. Colloid Interface Sci.84, 149 (1981).

    Article  CAS  Google Scholar 

  9. J. Jacobson, J. Frenz, C. Horvath, J. Chromatogr.316, 69 (1984).

    Article  Google Scholar 

  10. F. Riedo, E. SZ. Kovats, J. Chromatogr.239, 1 (1982).

    CAS  Google Scholar 

  11. D. H. Desty, A. Goldup, G. R. Luckhurst, W. T. Swanton, in “Gas Chromatography”,M. Van Swaay, ed., Butterworths, London, 1962; pp. 67–83.

    Google Scholar 

  12. M. W. P. Harbison, R. J. Laub, D. E. Martine, J. H. Purnell, P. S. Williams, J. Phys. Chem.83, 1262 (1979).

    Article  CAS  Google Scholar 

  13. D. C. Locke, J. Phys. Chem.69, 3768 (1965).

    CAS  Google Scholar 

  14. C. Vidal-Madjar, M. F. Gonnord, M. Goedert, G. Guiochon, J. Phys. Chem.79, 732 (1975).

    Article  CAS  Google Scholar 

  15. M. Mc Cann, H. Purnell, C. A. Wellington, Faraday Soc. Symp.15, 83 (1980).

    Google Scholar 

  16. N. Le Ha, J. Ungvral, E. sz Kovats, Anal. Chem.54, 2410 (1982).

    Google Scholar 

  17. C. Horvath, W. Melander, A. Nahum, J. Chromatogr.186, 371 (1979).

    CAS  Google Scholar 

  18. J. Villermaux, J. Chromatogr. Sci.12, 822 (1974).

    CAS  Google Scholar 

  19. K. F. Scott, C. S. G. Phillips, J. Catal.51, 131 (1978).

    Article  CAS  Google Scholar 

  20. N. A. Katsanos, G. Karaiskakis, in “Advances in Chromatography”, Vol. 24,J. C. Giddings, E. Grushka, J. Cazes, P. Brown, eds., Dekker, New York, 1984; pp. 125–180.

    Google Scholar 

  21. M. K. Bolme, S. H. Langer, J. Phys. Chem.87, 3363 (1983).

    Article  CAS  Google Scholar 

  22. V. R. Maynard, E. Grushka, in “Advances in Chromatography”, Vol. 12,J. C. Gidings, E. Grushka, R. A. Keller, J. Cazes, eds., Dekker, New York, 1975; pp. 99–140.

    Google Scholar 

  23. E. Grushka, E. J. Kikta, J. Phys. Chem.78, 2297 (1974).

    CAS  Google Scholar 

  24. J. G. Atwood, J. Goldstein, J. Phys. Chem.88, 1875 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ignatiadis, I., Gonnord, M.F. & Vidal-Madjar, C. Measurement of thermodynamic equilibria by chromatography. Chromatographia 23, 215–219 (1987). https://doi.org/10.1007/BF02311484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02311484

Key Words

Navigation