Skip to main content
Log in

The modification of the triple helical structure of gelatin in aqueous solution I. The influence of anionic surfactants, pH-value, and temperature

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The modification of the triple helical structure in aqueous gelatin solutions by changing pH and adding alkyl sulphates at 298 K and after rechilling the solution to 283 K was investigated by CD-measurement. At 298 K the triple helical content at the IEP of the gelatin has its maximum value. It is only weakly affected by adding sodium dodecyl sulphate (SDDS) at concentrations <10−4 M/dm3. The unfolding of the triple helix affected by pH and SDDS is reversible by rechilling the solution. The triple helical content of gelatin solutions decreases at SDDS concentrations higher than 10−4 M/dm3. In all cases the decrease of the amount of triple helical structure is connected with an increase of the cis-configuration in single chains and leads to chain reversals. At sufficiently high SDDS concentrationsβ-sheets are formed. These changes are thermally irreversible. Sodium decyl sulphate (SDS) has a more minor influence than SDDS except in the range of the c.m.c. of SDS. At sufficiently high SDS concentrations,β-turns appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Küntzel A, Le Nénaon JC (1961) Leder 12:9

    Google Scholar 

  2. Pankhurst KGA, Smith RCM (1944) Trans Faraday Soc 40:565

    Google Scholar 

  3. Ramachandran GN, Kartha G (1954) Nature 174:269

    PubMed  Google Scholar 

  4. Ramachandran GN, Kartha G (1955) Nature 176:593

    PubMed  Google Scholar 

  5. Ramachandran GN, Kartha G (1955) Proc Indian Acad Sci 42A:215

    Google Scholar 

  6. Ramachandran GN, Chandrasekharan R (1968) Biopolymers 6:1649

    Article  PubMed  Google Scholar 

  7. Miller MH, Scheraga HA (1976) J Polymer Sci Symp 54:171

    Google Scholar 

  8. von Hippel PH (1967) In: Ramachandran GN (ed) Treatise on Collagen. Academic Press, New York

    Google Scholar 

  9. Madison V, Schellman J (1972) Biopolymers 11:1041

    Article  PubMed  Google Scholar 

  10. Ohsaka M, Izumi J, Imamura A (1984) Int J Biol Macromol 6:234

    Article  Google Scholar 

  11. Harrington WF, Rao NV (1970) Biochemistry 9:3714, 3723

    PubMed  Google Scholar 

  12. Harrington WF, Karr G (1970) Biochemistry 9:3725

    PubMed  Google Scholar 

  13. Hauschka PV, Harrington WF (1970) Biochemistry 9:3734

    PubMed  Google Scholar 

  14. Okuyama K, Arnott S, Takayanagi M, Kakudo M (1981) J Mol Biol 152:427

    Article  PubMed  Google Scholar 

  15. James DW, Rintoul L (1982) Aust J Chem 35:1157

    Google Scholar 

  16. Hoeve CAJ, Lue PC (1982) Biopolymers 21:1661

    Google Scholar 

  17. Lüscher-Mattli M, Ruegg M (1982) Biopolymers 21:403

    Google Scholar 

  18. Gonzales E, Hamabata A, Rojkind M (1984) Collagen Rel Res 4:339

    Google Scholar 

  19. James TC (1980) Teorijay fotograficeskogo processa. Leningrad, Chimija, p 56

    Google Scholar 

  20. Macsuga DD (1972) Biopolymers 11:2521

    PubMed  Google Scholar 

  21. Gardi A, Nischmann HS, Rieder K (1973) Chimia 27:116

    Google Scholar 

  22. Nishio T, Hayashi R (1985) Agric Biol Chem 49:1675

    Google Scholar 

  23. Mandel R, Holzwarth G (1973) Biopolymers 12:655

    Article  Google Scholar 

  24. Caldwell JW, Applequist J (1984) Biopolymers 23:1891

    PubMed  Google Scholar 

  25. Sutch K, Noda H (1974) Biopolymers 13:2391

    PubMed  Google Scholar 

  26. Jennes OD, Sprecher C, Curtis W, Johnson WC (1976) Biopolymers 15:513

    PubMed  Google Scholar 

  27. Pysh ES (1974) Biopolymers 13:1563

    PubMed  Google Scholar 

  28. Ronish W, Krimm S (1974) Biopolymers 13:1635

    PubMed  Google Scholar 

  29. Madison V, Schellman J (1970) Biopolymers 9:65

    Google Scholar 

  30. Applequist J (1981) Biopolymers 20:2311

    Google Scholar 

  31. Wetzel R, Buder E, Hermel H, Hüttner A (1987) Colloid Polym Sci 265:1036

    Google Scholar 

  32. Punkhurst KGA (1949) Disc Faraday Soc 6:52

    Google Scholar 

  33. Tamaki K, Tamamushi B (1955) Bull Chem Soc Jpn 28:555

    Google Scholar 

  34. Knox WJ, Wright JF (1965) J Colloid Sci 20:177

    Article  Google Scholar 

  35. Tavernier BH (1983) J Colloid Interface Sci 93:419

    Google Scholar 

  36. Wüstneck R, Zastrow L, Kretzschmar G (1985) Kolloid Z, USSR 47:462

    Google Scholar 

  37. Wüstneck R, Hermel H, Kretzschmar G (1984) Colloid Polym Sci 262:827

    Google Scholar 

  38. Wüstneck R, Zastrow L, Kretzschmar G (1987) Kolloid Z, USSR 49:10

    Google Scholar 

  39. Wüstneck R, Wüstneck NP, Hermel H, Zastrow L (1987) Kolloid Z, USSR 49:244

    Google Scholar 

  40. Hermel H (1981) Signal AM 9:55

    Google Scholar 

  41. Eastoe JE, Leach AA (1977) In: Ward AG, Courts A (eds) Food Sci and Technology of Gelatin. Academic Press, London New York San Francisco, p 78

    Google Scholar 

  42. Wüstneck R, Fruhner H (1981) Colloid Polym Sci 259:1228

    Google Scholar 

  43. Tamburro AM, Guantieri V (1984) Biopolymers 23:617

    Google Scholar 

  44. Madison V, Schellman J (1972) Biopolymers 11:1041

    Article  PubMed  Google Scholar 

  45. Brahms S, Brahms J (1980) J Mol Biol 138:149

    PubMed  Google Scholar 

  46. Wetzel R, Becker M, Behlke J, Billwitz H, Böhm S, Ebert B, Hamann H, Krumbiegel J, Lassmann G (1980) Eur J Biochem 104:469

    PubMed  Google Scholar 

  47. Tschesche H (1982) In: Hoppe W, Lohmann W, Markl H, Ziegler H (ed) Biophysik. Springer Verlag, Berlin, p 35

    Google Scholar 

  48. Brandts JF, Halvorson HR, Brennan M (1975) Biochemistry 14:4953

    PubMed  Google Scholar 

  49. Steinberg IZ, Harrington WF, Berger A, Selas M, Katchalski EJ (1960) J Am Chem Soc 82:5263

    Google Scholar 

  50. Pčelin VA, Kulman RA (1961) Vysokomolek Soed 3:768

    Google Scholar 

  51. Izmailova VN, Rehbinder PA (1974) Strukturoobrazovanie v belkovych sistemach. Moskva, Nauka, p 179

    Google Scholar 

  52. Steinhardt J, Reynolds JA (1969) Multiple Equilibria in Proteins. Academic Press, New York

    Google Scholar 

  53. Burkhard RK, Stolzenberg GE (1972) Biochemistry 11:1672

    PubMed  Google Scholar 

  54. Seno M, Noritomi H, Kuroyanagi Y, Iwamoto K, Ebert G (1984) Colloid Polym Sci 262:727

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wüstneck, R., Wetzel, R., Buder, E. et al. The modification of the triple helical structure of gelatin in aqueous solution I. The influence of anionic surfactants, pH-value, and temperature. Colloid & Polymer Sci 266, 1061–1067 (1988). https://doi.org/10.1007/BF01428818

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01428818

Key words

Navigation