Skip to main content
Log in

Interaction of acridine orange monohydrochloride dye with sodiumdodecylsulfate, (SDS) cetyltrimethylammoniumbromide (CTAB) and p-tert-octylphenoxypolyoxy ethanol (Triton X 100) surfactants

  • Original Contributions
  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Summary

Results of spectrophotometric, conductometric and dialysis studies on the interaction of acridine orange monohydrochloride dye with sodiumdodecylsulfate (anionic), cetyltrimethylammoniumbromide (cationic) and Triton X 100 (nonionic) surfactants have been reported. The anionic surfactant, SDS has been observed to undergo both electrostatic and hydrophobic interactions with the dye cation. Aggregation of the dye molecules can be destroyed when the surfactant is in large excess, whereas, excess dye can check micellization of SD S. At a ratio of AO:SDS=1:7 and above, dye embedded mixed micelles are formed. These remain in a separate phase, probably as coacervates. At lower ratios than 1:7, aggregation of dye molecules is induced, which being complexed with SDS become stabilized as colloids. The colloid and the coacervate have been observed to be thermally stable, negatively charged materials that can be broken by salts, and cations of higher valency are more effective in this regard. An 1:3 = AO:SDS colloid has beeen found to be sufficiently large like the coacervates to pass through a membrane having cut off permeability for molecular weights 12,000 and above. All the above features of AO-SDS interaction have been observed to be absent for AO-CTAB and AO-TX 100 systems, Even hydrophobic interaction has played an insignificant role in these cases. Thus, the dye cation, the cationic and the nonionic surfactants have almost retained their self physicochemical identities in solution in the presence of each other. Electrostatic interaction is thus the primary requirement for acridine orange-surfactant (anionic) system; the hydrophobic effect is secondary and may become co-operative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. West, S. S., in: Physical Techniques in Biological Research,A. W. Pollister, Ed., Academic Press, New York, Vol.IIIC, (1970).

    Google Scholar 

  2. Hofmann, A. F., Biochem. J.89, 57 (1963).

    PubMed  Google Scholar 

  3. Barry, B. W., G. F. J. Russell, J. Pharm. Sci.61, 552 (1972).

    PubMed  Google Scholar 

  4. Singhal, G. S., E. Rabinowitch, J. Hevesi, V. Srinivasan, Photochem. Photobiol.11, 531 (1970).

    PubMed  Google Scholar 

  5. Hevesi, J., E. Balint, B. Nemet, Acta Physica Chem. Szeged.29, 205 (1973).

    Google Scholar 

  6. Kawamato, M., W. Graumann, Acta Histochem.33, 238 (1969).

    PubMed  Google Scholar 

  7. Watanabe, F., J. Phys. Chem.80, 339 (1976); Bull. Chem. Soc. Japan49, 1465 (1976).

    Google Scholar 

  8. Vitaghano, V., L. Costantino, R. Sartorio, J. Phys. Chem.80, 959 (1976).

    Google Scholar 

  9. Salter, M., W. B. Rippon, E. W. Abrabamson, Biopolymers15, 1213 (1976).

    PubMed  Google Scholar 

  10. Rosenkranz, P., H. Schmidt, Z. Naturforsch.31 C, 679 (1976).

    Google Scholar 

  11. Mukherjee, P., K. J. Mysels, Critical micelle concentrations of aqueous surfactant system, NSRDS-NBS 36, Washington D.C., U.S.A., 1971.

  12. Robinson, B. H., N. C. White, C. Mateo, Adv. Mol. Relaxation Processes7(a), 321 (1975).

    Google Scholar 

  13. Tondre, C., J. Lang, R. Zana, J. Coll. Inter. Sci.52, 372 (l975).

    Google Scholar 

  14. Moulik, S. P., S. Ghosh, A. R. Das, Ind. J. Chem.14 A, 302 (l976).

    Google Scholar 

  15. Moulik, S. P., S. Ghosh, A. R. Das, Ind. J. Chem.14 A, 306 (l976).

    Google Scholar 

  16. Moulik, S. P., S. Ghosh, A. R. Das, Ind. J. Chem.15 A, 345 (l977).

    Google Scholar 

  17. Moulik, S. P., S. Ray, A. R. Das, J. Phys. Chem.81, 1766 (l977).

    Google Scholar 

  18. Moulik, S. P., S. Ray, A. R. Das, J. Phys. Chem.80, 161 (l976).

    Google Scholar 

  19. Moulik, S. P., D. P. Khan, Ind. J. Chem.15 A, 267 (l977).

    Google Scholar 

  20. Reeves, R. L., R. S. Kaiser, H. W. Mark, J. Coll. Inter. Sci.45, 396 (l973).

    Google Scholar 

  21. “Colloid Science”, Ed. H. R. Kruyt, Vol.II, Elsevier (New York 1949).

    Google Scholar 

  22. Mukherjee, P., Advan. Colloid Interface Sci.1, 24l (l967).

    Google Scholar 

  23. Shinoda, K., T. Nakagawa, B. Tamamwhi, T. Isemura, “Colloidal surfactants”, Academic Press, New York, p. 20, 1963.

    Google Scholar 

  24. Moulik, S. P., D. P. Khan, Ind. J. Chem.16 A 16 (l978).

    Google Scholar 

  25. Mc Donald, J. C., J. S. Serphillips, J. J. Guerrera, J. Phys. Chem.77, 370 (1972).

    Google Scholar 

  26. Glasstone, S., Text book of physical chemistry, 2nd Edn., Macmillan, London, p. 1243, 1960.

    Google Scholar 

  27. Tanford, C., The hydrophobic effect: Formation of micelles and biological membranes, Wiley-Interscience (New York 1973).

    Google Scholar 

  28. Balint, E., E. Lehoczki, J. Hevesi, Acta Phys. Chem. Szeged17, 15 (1971).

    Google Scholar 

  29. Mukherjee, P., K. J. Mysels, J. Amer. Chem. Soc.77, 2937 (1955).

    Google Scholar 

  30. Lehoczki, E., J. Hevesi, Acta Phys. Chem. Szeged18, 11 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 figures and 2 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moulik, S.P., Ghosh, S. & Das, A.R. Interaction of acridine orange monohydrochloride dye with sodiumdodecylsulfate, (SDS) cetyltrimethylammoniumbromide (CTAB) and p-tert-octylphenoxypolyoxy ethanol (Triton X 100) surfactants. Colloid & Polymer Sci 257, 645–655 (1979). https://doi.org/10.1007/BF01548834

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01548834

Keywords

Navigation