Skip to main content
Log in

Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic)

Petrogenese kontrastierender Granitplutone in Westböhmen (Tschechien)

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Late-Variscan granitoid plutons in western Bohemia (Bor, Waidhaus-Rozvadov) have distinct petrographic, geochemical and isotopic features that suggest different magmatic evolutions. The Bor pluton comprises a suite of metaluminous tonalites and quartz diorites (Bor I), weakly peraluminous (monzo-)granites and granodiorites (Bor II) and medium-aluminous, late vein-forming leucomonzogranites (Bor III). The Waidhaus-Rozvadov pluton is strongly peraluminous, comprising a cordierite-biotite granitoid (CBG), the Rozvadov granite (ROG), the Bärnau granite (BÄG) and the subordinate, highly evolved Kreuzstein (Křížový kámen) granite (KG). Geochemical parameters and initial87Sr/86Sr ratios straddle the boundary between I- and S-type granites in the Bor pluton and are characteristic of purely S-type granites in the Waidhaus-Rozvadov pluton.

The Bor II granitoids have been dated by the Rb-Sr whole-rock method at 341±17 Ma (ISr = 0.70724±0.00060). K-Ar biotite and muscovite ages of all units of the Bor pluton are mainly in the range 321-315 Ma. The K-Ar mineral ages are in good agreement with recently published U-Pb zircon data of these rocks. The different units of the Waidhaus-Rozvadov pluton have yielded less well-constrained Rb-Sr whole-rock ages, ranging from 313 to 300 Ma. However, the intrusion sequence is constrained by K-Ar muscovite ages (312-302 Ma), which define a systematic decrease towards the chemically more evolved granite types. Taken as a whole, it seems likely that the new radiometric ages characterize two temporally distinct periods of late-Variscan granitoid intrusion. The regional significance of these periods is emphasized by contemporaneous ages previously found in the adjacent northeastern Bavarian granitoids.

The initial Sr and Nd isotope systematics indicate that the Bor and the WaidhausRozvadov plutons were derived from different source rocks. The Bor granitoids reflect the influence of less evolved crustal material which may have been similar to paragneisses of the Teplá-Barrandian region, including the Zone of ErbendorfVohenstrauß (ZEV). The Waidhaus-Rozvadov granitoids probably resulted from anatexis of rocks resembling surrounding Moldanubian paragneisses or metapelites. In addition, the two plutons exhibit poorly defined, opposite trends of εNd(T) variation which are ascribed to assimilation processes.

Zusammenfassung

Spätvariscische Granitplutone in Westböhmen (Bor, Waidhaus-Rozvadov) weisen petrographische, geochemische und isotopische Kontraste auf, die unterschiedliche magmatische Entwicklungen nahelegen. Der Bor Pluton umfaßt metalumine Tonalite und Quarzdiorite (Bor I), schwach peralumine (Monzo-)granite und Granodiorite (Bor II) und mäßig alumine, gangbildende Leukomonzogranite (Bor III). Der WaidhausRozvadov Pluton besitzt stark peralumine Zusammensetzung und läßt sich in einen Cordierit-Biotit Granitoid (CBG), den Rozvadov Granit (ROG), den Bärnau Granit (BÄG) und den stofflich hochentwickelten Kreuzstein (Křížový kámen) Granit (KG) untergliedern. Geochemische Parameter und initiale87Sr/86Sr-Verhältnisse liegen im Falle des Bor Plutons im Übergangsbereich zwischen I- und S-Typ Graniten und im Falle des Waidhaus-Rozvadov Plutons im Bereich reiner S-Typ Granite.

Die Bor II Granitoide wurden nach der Rb-Sr Gesamtgesteinsmethode auf 341±17 Ma (ISr = 0.70724±0.00060) datiert. K-Ar Biotit- und Muskovitalter der Bor Granitoide liegen zwischen 321 and 315 Ma. Die K-Ar Mineralalter stehen im Einklang mit den kürzlich publizierten U-Pb Zirkondaten dieser Gesteine. Die verschiedenen Teilintrusionen des Waidhaus-Rozvadov Plutons liefern weniger gut definierte Rb-Sr Gesamtgesteinsalter zwischen 313 and 300 Ma. Die Intrusionsabfolge läßt sich dennoch durch K-Ar Muskovitalter festlegen (312-302 Ma), die eine systematische Abnahme von den weniger zu den starker entwickelten Granittypen aufweisen. Als Ganzes betrachtet dokumentieren die neuen radiometrischen Daten zwei zeitlich voneinander getrennte spdtvariscische Intrusionsereignisse. Die regionale Signifikanz dieser Ereignisse wird durch eine analoge Altersverteilung in den benachbarten nordostbayerischen Granitoiden untermauert.

Anhand der initialen Sr und Nd Isotopensystematik können für die Bor und Waidhaus-Rozvadov Plutone unterschiedliche Quellen abgeleitet werden. Die Bor Granitoide spiegeln den Einfluß von gering entwickelten krustalen Material wider, das ähnliche stoffliche Eigenschaften besaß, wie Paragneise des Teplá-Barrandiums und der Zone von Erbendorf-Vohenstrauss (ZEV). Die Waidhaus-Rozvadov Granitoide lassen sich als Derivate moldanubischer Paragneise and Metapelite oder vergleichbarer Gesteine auffassen. Die zwei Plutone weisen schwach ausgeprägte gegensätzliche εNd(T)-Variationen auf, was auf unterschiedliche Assimilationsprozesse zurückgeführt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In:Barker F (ed) Trondhjemites, dacites, and related rocks. Developments in Petrology 6. Elsevier, New York, pp 1–12

    Google Scholar 

  • Breiter K, Fryda J (1995) Moldanubicum — a new province of P-rich rare metal granites. In:Pasava J, Kribek B, Žák K (eds) Mineral deposits: from their origin to their environmental impacts. Balkema, Rotterdam, pp 419–422

    Google Scholar 

  • Breiter K, Siebel W (1995) Granitoids in the Rozvadov pluton. Geol Rundsch 84: 506–519

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8: 173–174

    Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86: 287–306

    Google Scholar 

  • Debon F, Le Fort P (1983) A chemical-mineralogical classification of common plutonic rocks and associations. Trans Roy Soc Edinburgh Earth Sci 73: 135–149

    Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53: 189–202

    Google Scholar 

  • DePaolo DJ, Linn AM, Schubert G (1991) The continental crustal age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United States. J Geophys Res 96: 2071–2088

    Google Scholar 

  • Dörr W, Zulauf G, Schastok J, Scheuvens D, Vejnar Z, Wemmer K, Ahrendt H (1996) The Tépla-Barrandian/Moldanubian s.str. boundary: preliminary geochronological results from fault related plutons. Terra nostra 96/2: 34–38

    Google Scholar 

  • Faul H, Davis GC (1959) Mineral separation with asymmetric vibrators. Am Mineral 44: 1076–1082

    Google Scholar 

  • Fiala V (1980) Die hydrothermale Verwandlung des Bor-Granits. I. Fol Mus Rer Natur Bohem Occid Plzeň Geol 16: 1–28

    Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61: 67–96

    Google Scholar 

  • Gerdes A (1997) Geochemische und thermische Modelle zur Frage der spätorogenen Granitgenese am Beispiel des Südböhmischen Batholiths: Basaltisches Underplating oder Krustenstapelung? Thesis, University of Göttingen, pp 113

  • Harris NBW, Inger S (1992) Trace element modelling of pelite-derived granites. Contrib Mineral Petrol 110: 46–56

    Google Scholar 

  • Hejtman B (1984) Petrography of magmatic rock of the Bohemian Massif, part I. Intrusive magmatic rocks of the western and northwestern Bohemia. Univ of Karlova: 1–185 (in Czech)

  • Hertogen J, Gijbels R (1976) Calculation of trace element fractionation during partial melting. Geochim Cosmochim Acta 40: 313–322

    Google Scholar 

  • Hofmann B (1992) Die metamorphe Geschichte des Kontakthofes Steinach und seiner Rahmengesteine. Thesis, University of Munich, pp 169

  • Holl PK, von Drach V, Müller-Sohnius D, Köhler H (1989) Caledonian ages in Variscan rocks: Rb-Sr and Sm-Nd isotope variations in dioritic intrusives from the northwestern Bohemian massif, West Germany. Tectonophysics 157: 179–194

    Google Scholar 

  • Holub FV (1977) Petrology of inclusions as a key to petrogenesis of the durbachitic rocks from Czechoslovakia. Tschermaks Mineral Petrogr Mitt 24: 133–150

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8: 523–548

    Google Scholar 

  • Kreuzer H, Seidel E, Schüßler U, Okrusch M, Lenz KL, Raschka H (1989) K-Ar geochronology of different tectonic units at the northwestern margin of the Bohemian Massif. Tectonophysics 157: 149–178

    Google Scholar 

  • Kreuzer H, Vejnar Z, Schüßler U, Okrusch M, Seidel E (1992) K-Ar dating on the Teplá-Domažlice Zone at the western margin of the Bohemian Massif. In:Kukal Z (ed) Proc 1st Int Conf on the Bohemian Massif, Sept 26 – Oct 3, 1988, Prague, pp 168–175

  • Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotope study. Contrib Mineral Petrol 98: 129–138

    Google Scholar 

  • Mrlina J (1993) Regional gravity map. In: Gravity field in western Bohemian Proterozoic. Geol Pruzk 35: 11–12 (in Czech)

    Google Scholar 

  • Müller H, Mingram B (1993) Gneisses of the KTB Vorbohrung and Hauptbohrung, II. Source rocks and petrogenesis. KTB-Report 93-2: 75–78

    Google Scholar 

  • Müller P (1979) Erfahrungen bei der Mineraltrennung für radiometrische Altersbestimmungen. Erzmetall 32: 232–236

    Google Scholar 

  • Müller P (1982) Von der CIPW-Norm ausgehende Berechnungen von Mineralbeständen magmatischer Gesteine in Analogie zu der Modalzusammensetzung plutonischer und vulkanischer Gesteine. Geol Jb D 55: 3–41

    Google Scholar 

  • Odin GS (1982) Interlaboratory standards for dating purposes. In:Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 123–150

    Google Scholar 

  • Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107: 202–218

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25: 956–983

    Google Scholar 

  • Pivec E, Novák JK (1996) The Mariánske Lázně granite: petrology and geochemistry, western Bohemia. J Czech Geol Soc 41: 15–22

    Google Scholar 

  • René M (1992) Uranium mineralization in the western part of the Bohemian Massif. In:Kukal Z (ed) Proc 1 st Int Conf on the Bohemian Massif, Sept 26 – Oct 3, 1988, Prague, pp 226–228

  • René M (1997) Petrogenesis of aplites of the Bor pluton. Acta Montana Series A No 11 (104):65–72

    Google Scholar 

  • Röhlich P, Štovîćkova N (1968) Die Tiefenstörungstektonik und deren Entwicklung im zentralen Teil der Böhmischen Masse. Geologie 17: 670–694

    Google Scholar 

  • Rollison H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, pp 352

  • Shand SJ (1947) Eruptive rocks. Their genesis, composition, classification, and their relation to ore deposits, 3rd ed. Wiley, New York, pp 488

    Google Scholar 

  • Siebel W (1993) Der Leuchtenberger Granit und seine assoziierten magmatischen Gesteine: Zeitliche und stoffliche Entwicklungsprozesse im Verlauf der Entstehung des Nordoberpfalz-Plutons. Thesis, University of Heidelberg, pp 308

  • Siebel W (1994) Inferences about magma mixing and thermal events from isotopic variations in redwitzites near the KTB site. KTB-Report 94-3: 157–164

    Google Scholar 

  • Siebel W (1995a) Anticorrelated Rb-Sr and K-Ar age discordances, Leuchtenberg granite, NE Bavaria, Germany. Contrib Mineral Petrol 120: 197–211

    Google Scholar 

  • Siebel W (1995b) Constraints on Variscan granite emplacement in north-east Bavaria, Germany: further clues from a petrogenesic study of the Mitterteich granite. Geol Rundsch 84: 384–398

    Google Scholar 

  • Siebel W, Höhndorf A, Wendt I (1995) Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125: 249–270

    Google Scholar 

  • Siebel W, Wendt I, Breiter K, Höhndorf A, Henjes-Kunst F, René M (1996) Rb-Sr, K-Ar geochronology and Nd isotopic study of contrasting granite massifs in western Bohemia. J Conf Abs I (V. M. Goldschmidt Conference, Heidelberg, March 31 – April 4, 1996): 569

    Google Scholar 

  • Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept. Geol Rundsch 86: S45-S63

    Google Scholar 

  • Škvor V (1976) Weakened zones and a model of geological development of the NW part of the Bohemian Massiv. Krystalinikum 12: 129–142

    Google Scholar 

  • Šmejkal V (1964) Absolutni stáří některých vyvřelých a metamorfovaných hornin Českého masívu stanovené kalium-argonovou metodou (II. část). Sbor geol Vědřada G 4: 121–136 (in Czech)

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology. Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36: 359–362

    Google Scholar 

  • Tomas J (1971) Geology and petrography of the Rozvadov massif in West Bohemia. Sbor geol Ved Geol 19: 99–117 (in Czech with English abstract)

    Google Scholar 

  • Troll G (1964) Das Intrusivgebiet von Fürstenstein (Bayerischer Wald). Geol Bavarica 52: pp 140

    Google Scholar 

  • Trzebski R (1997) Morphogenesis, tectonic setting and intrusion dynamics of the lateVariscan granites at the northwest-margin of the Bohemian Massif. Göttinger Arb Geol Paläont 69: 1–66

    Google Scholar 

  • Vejnar Z (1962) Zum Problem des absoluten Alters der kristallinen Schiefer und der Intrusiva des westböhmischen Kristallins. Krystalinikum 1: 149–159

    Google Scholar 

  • Vejnar Z (1968) The genesis of pegmatites and its relationship to the metamorphic and magmatic development of the West-Bohemian crystalline complexes. Rozpravy Československé Akademie Věd, Řada, MPV 78, 3–70

    Google Scholar 

  • Vejnar Z (1977) The Babylon granite massif and its contact aureole, South-West Bohemia. Vest Cstf Ust geol 54: 199–205

    Google Scholar 

  • Vejnar Z, Neužilová M, Syka J (1969) Geology and petrography of the Bor massif. Věst Ústř Úst geol 44: 245–257 (in Czech)

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib Mineral Petrol 98: 257–276

    Google Scholar 

  • Wendt I (1986) Radiometrische Methoden in der Geochronologie. Pilger, Clausthaler Tektonische Hefte 23: 1–170

    Google Scholar 

  • Wendt I, Kreuzer H, Müller P, Schmid H (1986) Gesamtgesteins- und Mineraldatierungen des Falkenberger Granits. Geol Jb E34: 5–66

    Google Scholar 

  • Wendt I, Höhndorf A, Kreuzer H, Müller P, Stettner G (1988) Gesamtgesteins- und Mineraldatierungen der Steinwaldgranite (NE-Bayern). Geol Jb E42: 167–194

    Google Scholar 

  • Wendt I, Carl C, Kreuzer H, Müller P, Stettner G (1992) Ergänzende Messungen zum Friedenfelser Granit (Steinwald) und radiometrische Datierung der Ganggranite im Falkenberger Granit. Geol Jb A137: 3–24

    Google Scholar 

  • Wendt I, Ackermann H, Carl C, Kreuzer H, Müller P, Stettner G (1994) Rb/SrGesamtgesteins- und K/Ar-Glimmerdatierungen der Granite von Flossenbürg und Bärnau. Geol Jb E51: 3–29

    Google Scholar 

  • Zulauf G (1994) Ductile normal faulting along the West Bohemian Shear Zone (Moldanubian/Teplá - Barrandian boundary): evidence for late Variscan extension collapse in the Variscan Internides. Geol Rundsch 83: 276–292

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86: 571–584

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 10 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebel, W., Breiter, K., Wendt, I. et al. Petrogenesis of contrasting granitoid plutons in western Bohemia (Czech Republic). Mineralogy and Petrology 65, 207–235 (1999). https://doi.org/10.1007/BF01161961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01161961

Keywords

Navigation