Skip to main content
Log in

Crystal structure of KMn3+ [SeO4]2 — a triclinic distorted member of the Yavapaiite family

Die Kristallstruktur vonKMn 3+[SeO4]-einem triklin verzerrten Vertreter der Yavapaiite-Familie

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

The crystal structure of synthetic KMn[SeO4]2 was determined by single crystal X-ray diffraction methods in space group\(P\bar 1\), a = 4.827(2) Å, b = 4.988(2) Å, c = 7.981(3) Å, α = 83.18(1)°,β = 85.32(2)°, γ = 67.92(1)°, V = 176.66 Å3, Z = 1; 1564 unique data, measured up to 2θ = 70° (MoKα-radiation); R, R(I)w = 0.034, 0.074.

KMn[SeO4]2 is closely related to monoclinic yavapaiite, KFe[SO4]2, and isotypic compounds. Jahn-Teller distorted MnO6 octahedra are alternately linked with KO10 polyhedra along [001]. The mean values of the Mn-O and Se-O distances are 2.007 Å and 1.637 Å, respectively.

Zusammenfassung

Die Kristallstruktur von synthetisch dargestelltem KMn[SeO4]2 wurde mittels Einkristallröntgenmethoden in der Raumgruppe\(P\bar 1\) bestimmt: a = 4.827(2) Å, b = 4.988(2) Å, c = 7.981(3) Å, α = 83.18(1)°,β = 85.32(2)°, γ = 67.92(1)°, V = 176.66 Å3, Z = 1; 1564 unabhängige Daten bis 2θ = 70° (MoKα-Strahlung); R, R(I)w = 0.034, 0.074.

KMn[SeO4]2 ist eng mit dem monoklinen Mineral Yavapaiit, KFe[SO4]2 und einer Reihe damit isotyper Verbindungen verwandt. Jahn-Teller verzerrte MnO6 Oktaeder sind alternierend mit KO10 Polyedern parallel [001] verbunden. Die Mittelwerte der Mn-O und Se-O Abstände sind 2.007 Å bzw. 1.637 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthony JW, McLean WJ, Laughon RB (1972) The crystal structure of yavapaiite: a discussion. Am Min 57:1546–1549

    Google Scholar 

  • Bonnin A (1970) Thèse, Rennes

  • Couchot P, Nguyen Minh Hoang F, Perret R (1971) Étude des spectres de vibration de l'ion SO4 −− dans la série de composés cristallisés du type M1Sc(SO4)2. Bull Soc Chim Fr 1971: 360–362

    Google Scholar 

  • Cudennec Y, Bonnin A (1977) Préparation et étude de chromates d'aluminium et d'alcalin appartenant aux systémes quarternaires M2O, Al2O3, CrO3, H2O (M = Na, K). J Inorg Nucl Chem 39: 155–156

    Google Scholar 

  • Debaerdemaeker T, Germain G, Main P, Tate C, Woolfson MM (1987)MULTAN87. A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data. Universities of Ulm, Federal Republic of Germany, Louvain, Belgium, and York, England

    Google Scholar 

  • Dowty E (1993) ATOMS 2.3—a computer program for displaying atomic structures. Kingsport, TN

  • Fehrmann R, Boghosian S, Papatheodorou GN, Nielsen K, Berg RW, Bjerrum NJ (1991) The crystal structure of NaV(SO4)2. Acta Chem Scand 45: 961–964

    Google Scholar 

  • Foster JJ, Hambly AN (1976) Preparation and properties of alkali metal chromium oxides of the formula MCr3O8. Aust J Chem 29: 2137–2148

    Google Scholar 

  • Giester G (1993) Crystal structure of the yavapaiite type compound NaFe[SeO4]2. Min Pet 48:227–233

    Google Scholar 

  • Giester G (1994) Crystal structure of anhydrous alum RbFe3+ (SeO4)2. Mh Chem (in press)

  • Giester G, Wildner M (1991) Hydrothermal synthesis and crystal structure of Mn(SeO3)2. J Solid St Chem 91: 370–374

    Google Scholar 

  • Giester G, Wildner M (1992) The crystal structures of kieserite-type compounds. II. Crystal structures of Me(II)SeO4 · H2O [Me = Mg, Mn, Co, Ni, Zn]. N Jb Min Mh 1992:135144

    Google Scholar 

  • Graeber EJ, Rosenzweig A (1971) The crystal structure of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2 · 4 H2 0. Am Min 56:1917–1933

    Google Scholar 

  • Gravereau P, Hardy A (1976) La série KFe(CrO4)2,n H2O: structure cristalline de KFe(CrO4)2. Bull Soc fr Minéral Cristallogr 99: 206–210

    Google Scholar 

  • Koskenlinna M, Niinistö L, Valkonen J (1976) The crystal structure of manganese (II) diselenite. Acta Chem Scand A30: 836–837

    Google Scholar 

  • Masse R, Durif A (1972) Préparation et données cristallographiques sur quelques monophosphates de type yavapaiite. C R Acad Sc Paris, t. 274: 1692–1695

    Google Scholar 

  • Nikolaev VP, Sadikov GG, Lavrov AV, Porai-Koshits MA (1983) Kristallitscheskaja struktura CsTa(PO4)2 i TaH(PO4)2. Izv Akad Nauk SSSR, Neorg Mater 19: 972–977

    Google Scholar 

  • Nikolaev VP, Sadikov GG, Lavrov AV, Porai-Koshits MA (1986) Kristallitscheskaja struktura RbTa(PO4)2 i nekotorije sakonomernosti stroenija ortofosfatow tantala. Izv Akad Nauk SSSR, Neorg Mater 22: 1369–1373

    Google Scholar 

  • Perret R (1970) Étude cristallographique du sulfate double de scandium et de potassium. Bull Soc fr Minéral Cristallogr 93: 493–494

    Google Scholar 

  • Perret R (1971) Données cristallographiques de KV(SO4)2. Bull Soc fr Minéral Cristallogr 94: 84–85

    Google Scholar 

  • Perret R, Thrìerr-Sorel A, Couchot P (1972) Sur les “aluns anhydres” de vanadium. Préparation et étude cristallographique de NH4V(SO4)2, TlV(SO4)2, NaV(SO4)2 et AgV(SO4)2. Bull Soc fr Minéral Cristallogr 95: 521–524

    Google Scholar 

  • Perret R, Couchot P (1974) Crystal data for sodium chromium „anhydrous alum”. J Appl Cryst 7: 336–337

    Google Scholar 

  • Perret R, Devaux M, Couchot P (1975) Identification cristallochimique de quelques composés anhydres du sulfate de rhodium. J Less-Comm Metals 42: 43–50

    Google Scholar 

  • Powder Diffraction File Set 33 (1983): 33–150, 33–279, 33–320, 33–1333, 33–1356. JCPDS-ICDD, Editor-in-Chief McClune, W. F.

  • Samaras D, Coing-Boyat J (1970) Affinement de la structure de FeSO4-α. Bull Soc fr Minéral Cristallogr 93: 190–194

    Google Scholar 

  • Sheldrick GM (1993) SHELXL-93 program for crystal structure refinement. University of Göttingen, Federal Republic of Germany

    Google Scholar 

  • Wildner M (1992) Structure of K2 Mn(SeO3)2, a further buetschliite-type selenite. Acta Cryst C 48: 595

    Google Scholar 

  • Wildner M (1993) Synthesis and crystal structures of the new alkaline-Mn(II)-Mn(III) selenites KMn(II)4Mn(III)(SeO3)6 and Li5Mn(II),Mn(III)(SeO3)8. J Solid St Chem 103: 341–352

    Google Scholar 

  • Wildner M (1994) Crystal structure of Mn(II)Mn(III)2O(SeO3)3. J Solid St Chem (in press)

  • Wilhelmi K-A (1957) Die Kristallstruktur von KCr3O8. Naturwissenschaften 22: 580–581

    Google Scholar 

  • Wilson AJC (ed) (1992) International tables for crystallography, vol/C. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 1 Figure

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giester, G. Crystal structure of KMn3+ [SeO4]2 — a triclinic distorted member of the Yavapaiite family. Mineralogy and Petrology 53, 165–171 (1995). https://doi.org/10.1007/BF01171954

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01171954

Keywords

Navigation