Skip to main content
Log in

Transmembrane potentials of parenchyma cells and nematode-induced transfer cells

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

A comparison of transmembrane potential (pd) properties of parenchyma cells and giant transfer cells induced by a root-knot nematode in the roots ofImpatiens balsamina has been made. Apart from some differences in rate of response to a few treatments, parenchyma and giant cells had similar pd values; active and passive components of the pd (cyanide, azide); responses to total ion concentration, pH and potassium concentration; responses to protein synthesis inhibitors (puromycin, cycloheximide and actinomycin D) and responses to sugars.

Both parenchyma cells and giant cells are depolarized by puromycin, cycloheximide and actinomycin D. The cells recover from the depolarization in the presence of cycloheximide, suggesting that this presumed protein synthesis inhibitor does not act in a straight-forward manner. The cells do not recover in the presence of puromycin or actinomycin D.

Parenchyma cells and giant cells clearly have different metabolic rates and ion fluxes, but their pd responses are the same. This suggests that the pd does not reflect metabolic activity or ion fluxes of a cell, but is strictly controlled in itself. Part of this control may be via a feedback mechanism acting on an electrogenic pump.

The depolarization caused by glucose is induced by aging the cells after excision. The effect is discussed in terms of an H+ dependent cotransport system and an ATPase permease system.

The apparent normality of pd responses of nematode-induced giant transfer cells suggests that they may be a useful model system for experiments on higher plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W. P., D. L. Hendrix, andN. Higinbotham, 1974: Higher plant cell membrane resistance by a single intracellular electrode method. Plant Physiol.53, 122–124.

    Google Scholar 

  • Bird, A. F., 1961: The ultrastructure and histochemistry of a nematode induced giant cell. J. biophys. biochem. Cytol.11, 701–715.

    PubMed  Google Scholar 

  • Bowling, D. J. F., 1972: Measurement of potassium activity and electrical potential in the intact root. Planta (Berl.)108, 147–151.

    Google Scholar 

  • —, 1973: A pH gradient across the root. J. exp. Bot.24, 1041–1045.

    Google Scholar 

  • Cleland, R., 1973: Auxin-induced hydrogen ion excretion fromAvena coleoptiles. Proc. nat. Acad. Sci.70, 3092–3093.

    Google Scholar 

  • Dropkin, V. H., andP. E. Nelson, 1960: The histopathology of root-knot nematode infections in soybeans. Phytopathology50, 442–447.

    Google Scholar 

  • Ellis, R. J., andI. R. MacDonald, 1970: Specificity of cycloheximide in higher plant systems. Plant Physiol.46, 227–232.

    Google Scholar 

  • Endo, B. Y., andJ. A. Veech, 1969: The histochemical localization of oxido-reductive enzymes of soybeans infected with the root-knot nematode,Meloidogyne incognita acrita. Phytopathology59, 418–425.

    Google Scholar 

  • Etherton, B., 1963: Relationship of cell transmembrane electropotential to potassium and sodium accumulation ratios in oat and pea seedlings. Plant Physiol.38, 581–585.

    Google Scholar 

  • —, andN. Higinbotham, 1960: Transmembrane potential measurements of cells of higher plants as related to salt uptake. Science131, 409–410.

    PubMed  Google Scholar 

  • —, andG. J. Nuovo, 1974: Rapid changes in membrane potentials of oat coleoptile cells induced by amino acids and carbohydrates. Plant Physiol. (suppl.), 49.

    Google Scholar 

  • Franklin, T. J., and G. A.Snow, 1971 : Biochemistry of antimicrobial action. Academic Press, pp. 1–163.

  • Gayler, K. R., andK. T. Glasziou, 1972: Physiological functions of acid and neutral invertases in growth and sugar storage in sugar cane. Physiol. Plant27, 25–31.

    Google Scholar 

  • Guy, M., andL. Reinhold, 1974: The uptake of 2-deoxy-D-glucose by isolatedRicinus cotyledons. Physiol. Plant.31, 4–10.

    Google Scholar 

  • Hager, A., H. Menzel, undA. Krauss, 1971: Versuche und Hypothese zur Primärwirkung des Auxins beim Streckungswachstum. Planta (Berl.)100, 47–75.

    Google Scholar 

  • Higinbotham, N., 1973: Electropotentials of plant cells. Ann. Rev. Plant Physiol.24, 25–46.

    Google Scholar 

  • —,B. Etherton, andR. J. Foster, 1964: Effect of external K, NH4, Na, Ca, Mg and H ions on the cell transmembrane electropotential ofAvena coleoptile. Plant Physiol.39, 196–203.

    Google Scholar 

  • —,J. S. Graves, andR. F. Davis, 1970: Evidence for an electrogenic ion transport pump in cells of higher plants. J. Membrane Biol.3, 210–222.

    Google Scholar 

  • Hill, B. S., andA. E. Hill, 1973: ATP-driven chloride pumping and ATPase activity in theLimonium salt gland. J. Membrane Biol.12, 145–158.

    Google Scholar 

  • Jones, M. G. K., 1974: Scanning electron microscopy of transfer cell wall ingrowths in nematode induced giant cells. Plant Physiol. (suppl.) 15.

    Google Scholar 

  • - and V. H.Dropkin, 1975: Cellular alterations induced in soybean roots by three endoparasitic nematodes. Physiol. Plant. Path. (in press).

  • —, andD. H. Northcote, 1972: Multinucleate transfer cells induced in coleus roots by the root-knot nematode,Meloidogyne arenaria. Protoplasma75, 381–395.

    Google Scholar 

  • —,A. Novacky, andV. H. Dropkin, 1974: “Action potentials” in nematode-induced plant transfer cells. Protoplasma80, 401–405.

    Google Scholar 

  • Kitasato, H., 1968: The influence of H+ on the membrane potential and ion fluxes ofNitella. J. gen. Physiol.52, 60–87.

    PubMed  Google Scholar 

  • Lüttge, V., andC. K. Pallaghy, 1969: Light triggered transient changes of membrane potential in green cells in relation to photosynthetic electron transport. Z. Pflanzen-physiol.61, 58–67.

    Google Scholar 

  • Mitchell, P., 1966: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev.41, 445–502.

    PubMed  Google Scholar 

  • Owens, R. G., andJ. H. Rubinstein, 1966: Metabolic changes induced by root-knot nematodes in host tissue. Contrib. Boyce Thompson Inst.23, 199–213.

    Google Scholar 

  • —, andH. N. Specht, 1966: Biochemical alterations induced in host tissues by root-knot nematodes. Contrib. Boyce Thompson Inst.23, 181–198.

    Google Scholar 

  • Pate, J. S., andB. E. S. Gunning, 1972: Transfer cells. Ann. Rev. Plant. Physiol.23, 173–196.

    Google Scholar 

  • Paulson, R. E., andJ. M. Webster, 1970: Giant cell formation in tomato roots caused byMeloidogyne incognita andMeloidogyne hapla (Nematoda) infection. Can. J. Bot.48, 271–276.

    Google Scholar 

  • Penny, M. G., andD. J. F. Bowling, 1974: A study of potassium gradients in epidermis of intact leaves ofCommelina communis L. in relation to stomatal opening. Planta (Berl.)119, 17–25.

    Google Scholar 

  • Rashke, K., andG. D. Humble, 1973: No uptake of anion required by opening stomata ofVicia faba: Guard cells release hydrogen ions. Planta (Berl.)115, 47–57.

    Google Scholar 

  • Raven, J. A., and F. A.Smith, 1973: The regulation of intracellular pH as a fundamental biological process. In: Ion transport in plants (W. P.Anderson, ed.), pp. 271–278. Academic Press.

  • — —, 1974: Significance of hydrogen ion transport in plant cells. Can. J. Bot.52, 1035–1048.

    Google Scholar 

  • Sacher, J. A., M. D. Hatch, andK. T. Glasziou, 1963: Sugar accumulation cycle in sugar cane. III. Physical and metabolic aspects of cycle in immature storage tissues. Plant Physiol.38, 348–354.

    Google Scholar 

  • Slayman, C. L., 1965: Electrical properties ofNeurospora crassa: respiration and the intracellular potential. J. gen. Physiol.49, 93–116.

    PubMed  Google Scholar 

  • —,W. S. Long, andC. Y.-H. Lu, 1973: The relationship between ATP and an electrogenic pump in the plasma membrane ofNeurospora crassa. J. Membrane Biol.14, 305–338.

    Google Scholar 

  • —, andC. W. Slayman, 1974: Depolarization of the plasma membrane ofNeurospora during active transport of glucose: evidence for a protondependent cotransport system. Proc. nat. Acad. Sci.71, 1935–1939.

    PubMed  Google Scholar 

  • Spanswick, R. M., 1972: Evidence for an electrogenic ion pump inNitella translucens. 1. The effect of pH, K+, Na+, light and temperature on the membrane potential and resistance. Biochem. biophys. Acta288, 73–89.

    PubMed  Google Scholar 

  • Veech, J. A., andB. Y. Endo, 1969: The histochemical localization of several enzymes in soybean infected with the root-knot nematodeMeloidogyne incognita acrita. J. Nematology1, 265–276.

    Google Scholar 

  • — —, 1970: Comparative morphology and enzyme histochemistry in root-knot resistant and susceptible soybeans. Phytopathology60, 896–902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M.G.K., Novacky, A. & Dropkin, V.H. Transmembrane potentials of parenchyma cells and nematode-induced transfer cells. Protoplasma 85, 15–37 (1975). https://doi.org/10.1007/BF01567756

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567756

Keywords

Navigation