Skip to main content
Log in

Where and when is microtubule diversity generated inParamecium? Immunological properties of microtubular networks in the interphase and dividing cells

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Ciliates are highly differentiated cells which display extensive deployment of microtubular systems. Because genetic diversity of tubulin is extremely reduced in these cells, microtubule diversity is mostly generated at the post-translational level either through direct modification of tubulin or through the binding of associated proteins to microtubules. We have undertaken a systematic exploration of microtubule diversity in ciliates by way of production of monoclonal antibodies. Previously we reported the biochemical characterization of these antibodies. In addition to antibodies directed against primary sequences, we obtained antibodies directed against post-translational modifications. In this paper, we report a detailed analysis of the distribution of the various epitopes on the microtubular networks ofParamecium, both in interphase cells and during division morphogenesis. Each of these antibodies decorates a subset of microtubules. Acetylation, recognized by antibodies TEU 318 and TEU 348, is detected on stable microtubules early after microtubule assembly. Epitopes recognized by two other antibodies (TAP 952 and AXO 58) are found on a subset of stable microtubules; in addition, the TAP 952 antibody is also found on labile microtubules; both epitopes are detected as soon as microtubule assembly occurs. In contrast, the epitope of the antibody, AXO 49, is associated with only a restricted subset of stable microtubules in the interphase cell, and is detected a lag-time after microtubule assembly during division morphogenesis. These data show that microtubule diversity is generated through a time-dependent sequence and according to a definite spatial pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adoutte A, Delgado P, Fleury A, Levilliers N, Lainé MC, Marty MC, Boisvieux-Ulrich E, Sandoz D (1991) Microtubule diversity in ciliated cells: evidence for its generation by post-translational modification in the axonemes ofParamecium and quail oviduct cells. Biol Cell 71: 227–245

    Google Scholar 

  • Albrecht-Buehler G (1985) Does the geometric design of centrioles imply their function? Cell Motil 1: 237–245

    Google Scholar 

  • Alexander JE, Hunt DF, Lee MK, Shabanowitz J, Michel H, Berlin SC, MacDonald TL, Sundberg RJ, Rebhun LI, Frankfurter A (1991) Characterization of posttranslational modifications in neuron-specific class III β-tubulin by mass spectrometry. Proc Natl Acad Sci USA 88: 4685–4689

    Google Scholar 

  • Audebert S, Desbruyères E, Gruszczynski C, Koulakoff A, Gros F, Denoulet P, Eddé B (1993) Reversible polyglutamylation of α- and β-tubulin and microtubule dynamics in mouse brain neurons. Mol Biol Cell 4: 615–626

    Google Scholar 

  • Barahona I, Soares H, Cyrne L, Penque D, Denoulet P, Rodriguez-Pousada C (1988) Sequence of one alpha and two beta tubulin genes ofTetrahymena pyriformis. Structural and functional relationships with other tubulin genes. J Mol Biol 202: 365–382

    Google Scholar 

  • Blose SH, Meltzer DI, Feramisco JR (1984) 10 nm filaments are induced to collapse in living cells microinjected with monoclonal and polyclonal antibodies against tubulin. J Cell Biol 98: 847–858

    Google Scholar 

  • Bré MH, de Néchaud B, Wolff A, Fleury A (1994) Glutamylated tubulin probed in ciliates with the monoclonal antibody GT 335. Cell Motil Cytoskeleton 27: 337–349

    Google Scholar 

  • Breitling F, Little M (1986) Carboxy-terminal regions on the surface of tubulin and rnicrotubules. Epitope locations of YOL 1/34, DM 1A and DM 1B. J Mol Biol 1989: 367–370

    Google Scholar 

  • Brugerolle G, Adoutte A (1988) Probing protistan phylogenies with an anti-tubulin antibody. BioSystems 21: 255–268

    Google Scholar 

  • Bulinski JC, Gundersen GG (1991) Stabilization and post-translational modification of microtubules during cellular morphogenesis. BioEssays 13: 285–293

    Google Scholar 

  • —, Richards JE, Piperno G (1988) Posttranslational modifications of α tubulin: detyrosination and acetylation differentiate populations of interphase rnicrotubules in cultured cells. J Cell Biol 106: 1213–1220

    Google Scholar 

  • Callen AM, Adoutte A, Andreu JM, Baroin-Tourancheau A, Bré MH, Calvo Ruiz P, Clérot JC, Delgado P, Fleury A, Jeanmaire-Wolf R, Viklicky V, Villalobo E, Levilliers N (1994) Isolation and characterization of libraries of monoclonal antibodies directed against various forms of tubulin inParamecium. Biol Cell 81: 95–119

    Google Scholar 

  • Cohen J, Beisson J (1988) The cytoskeleton. In: Görtz HD (ed)Paramecium. Springer, Berlin Heidelberg New York Tokyo, pp 363–392

    Google Scholar 

  • —, Adoutte A, Grandchamp S, Houdebine LM, Beisson J (1982) Immunocytochemical study of microtubular structures throughout the cell cycleof Paramecium. Biol Cell 44: 35–44

    Google Scholar 

  • Dentler WL (1990) Linkages between microtubules and membranes in cilia and flagella. In: Bloodgood RA (ed) Ciliary and flagellar membranes. Plenum, New York, pp 31–64

    Google Scholar 

  • Dupuis P (1992a) Structure, organisation et expression des gènes de tubulin chez la Paramécie. Doctoral thesis, Université Paris XI, Orsay, France

    Google Scholar 

  • — (1992b) The beta-tubulin genes ofParamecium are interrupted by two 27 pb introns. EMBO J 11: 3713–3719

    Google Scholar 

  • Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, Denoulet P (1990) Post-translational glutamylation of α-tubulin. Science 247: 83–85

    Google Scholar 

  • Fleury A, Laurent M (1995) Cortical morphogenesis inParamecium. I. Dynamics of the paratene associated network of acetylated microtubules and its relation to invariance of a morphogenetical field. Eur J Protistol 31: 190–200

    Google Scholar 

  • Frankel J (1989) Pattern formation. Ciliates studies and models. Oxford University Press, Oxford

    Google Scholar 

  • Gaertig J, Thatcher TH, McGrath KE, Callahan RC, Gorovsky MA (1993) Perspectives on tubulin isotype function and evolution based on the observation thatTetrahymena thermophila microtubules contain a single α- and β-tubulin. Cell Motil Cytoskeleton 25: 243–253

    Google Scholar 

  • Gelfand VI, Bershadsky AD (1991) Microtubule dynamics: mechanism, regulation, and function. Annu Rev Cell Biol 7: 93–116

    Google Scholar 

  • Grain J (1969) Le cinétosome et se dérivés chez les ciliés. Ann Biol 8: 53–97

    Google Scholar 

  • — (1986) The cytoskeleton in protists: nature, structure, and functions. Int Rev Cytol 104: 153–249

    Google Scholar 

  • Greer K, Maruta H, L'Hernault SW, Rosenbaum JL (1985) α-Tubulin acetylase activity in isolatedChlamydomonas flagella. J Cell Biol 101: 2081–2084

    Google Scholar 

  • Hausmann K, Allen R (1977) Membranes and microtubules of the excretory apparatus ofParamecium caudatum. Cytobiology 15: 303–320

    Google Scholar 

  • Helftenbein E, Muller E (1988) Both α-tubulin genes are transcriptionally active inStylonychia lemnae. Curr Genet 13: 425–432

    Google Scholar 

  • Iftode F, Adoutte A (1991) Un mécanisme de régulation morphogénétique chezParamecium: la rotation du cortex. C R Acad Sci Paris 313: 65–72

    Google Scholar 

  • —, Cohen J, Ruiz F, Torres-Rueda A, Chen-Shan L, Adoutte A, Beisson J (1989) Development of surface pattern during division inParamecium I. Mapping of duplication and reorganization of cortical cytoskeletal structures in the wild type. Development 105: 191–211

    Google Scholar 

  • Jeanmaire-Wolf R, Clérot JC, Nahon P, Iftode F, Fleury A, Adoutte A (1993) Isolation and characterization of monoclonal antibodies to cytoskeletal and membrane proteins of theParamecium cortex. Eur J Protistol 29: 311–333

    Google Scholar 

  • Johnson KA, Rosenbaum JL (1992) Polarity of flagellar assembly inChlamydomonas. J Cell Biol 119: 1605–1611

    Google Scholar 

  • Kirschner M, Mitchison T (1986) Beyond self assembly: from microtubules to morphogenesis. Cell 45: 329–342

    Google Scholar 

  • Kozminski KG, Diener DR, Rosenbaum JL (1993) High level expression of nonacetylatable α-tubulin inChlamydomonas reinhardtii. Cell Motil Cytoskeleton 25: 158–170

    Google Scholar 

  • Laurent M, Fleury A (1995a) A model with excitability and relay properties for the generation and the propagation of a Ca2+ morphogenetic wave inParamecium. J Theor Biol 174: 227–236

    Google Scholar 

  • - - (1995b) Microtubule dynamics and morphogenesis inParamecium. II. Modeling of the conversion of a transient molecular signal into a morphogenetical process. Eur J Protistol (in press)

  • —, Johannin G, Le Guyader H, Fleury A (1992) Confocal scanning microscopy and three dimensional imaging. Biol Cell 76: 113–124

    Google Scholar 

  • Le Dizet M, Piperno G (1987) Identification of an acetylation site ofChlamydomonas α-tubulin. Proc Natl Acad Sci USA 84: 5720–5724

    Google Scholar 

  • L'Hernault SW, Rosenbaum JC (1983)Chlamydomonas α-tubulin is posttranslationally modified in the flagella during flagellar assembly. J Cell Biol 97: 258–263

    Google Scholar 

  • Patterson DJ (1980) Contractile vacuoles and associated structures: their organization and function. Biol Rev 55: 1–46

    Google Scholar 

  • Piperno G, Fuller MT (1985) Monoclonal antibodies specific for an acetylated form of α-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol 101: 2085–2094

    Google Scholar 

  • Redeker V, Levilliers N, Schmitter JM, Le Caer JP, Rossier J, Adoutte A, Bré MH (1994) Polyglycylation of tubulin: a post-translational modification in axonemal microtubules. Science 266: 1688–1691

    Google Scholar 

  • Sasse R, Glyn MCP, Birkett CR, Gull K (1987) Acetylated α-tubulin in Physarum: immunological characterization of the isotype and its usage in particular organelles. J Cell Biol 104: 41–49

    Google Scholar 

  • Schliwa M, Van Blerkom J (1981) Structural interaction of cytoskeletal components. J Cell Biol 90: 222–235

    Google Scholar 

  • Silflow CD (1991) Why do tubulin gene families lack diversity in flagellate/ciliate protists? Protoplasma 164: 9–11

    Google Scholar 

  • Sonneborn TM (1964) The differentiation of cells. Proc Natl Acad Sci USA 51: 915–919

    Google Scholar 

  • Stephens RE (1992) Tubulin in sea urchin embryonic cilia: post-translational modifications during regeneration. J Cell Sci 101: 837–845

    Google Scholar 

  • Sundararaman V, Hanson ED (1976) Longitudinal microtubules and their functions during asexual reproduction inParamecium tetraurelia. Genet Res Camb 27: 205–211

    Google Scholar 

  • Torres A, Delgado P (1989) Effects of cold and nocodazole treatments on the microtubular systems ofParamecium in interphase. J Protozool 36: 113–119

    Google Scholar 

  • —, Rossignol M, Beisson J (1991) Nocodazole-resistant mutants inParamecium. J Protozool 38: 295–304

    Google Scholar 

  • Witman GB (1990) Linkages between microtubules and membranes in cilia and flagella. In: Bloodgood RA (ed) Ciliary and flagellar membranes. Plenum, New York, pp 1–30

    Google Scholar 

  • Wolff A, de Néchaud B, Chillet D, Mazarguil H, Desbruyères E, Audebert S, Eddé B, Gros F, Denoulet P (1992) Distribution of glutamylated α- and β-tubulin in mouse tissues using a specific monoclonal antibody, GT 335. Eur J Cell Biol 59: 425–432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleury, A., Callen, A.M., Bré, M.H. et al. Where and when is microtubule diversity generated inParamecium? Immunological properties of microtubular networks in the interphase and dividing cells. Protoplasma 189, 37–60 (1995). https://doi.org/10.1007/BF01280290

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280290

Keywords

Navigation