Skip to main content
Log in

A new putative cellulose-synthesizing complex ofColeochaete scutata

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Cells of the charophycean alga,Coleochaete scutata active in cell wall formation were freeze fractured in the search for cellulose synthesizing complexes (TCs) since this alga is considered to be among the most advanced and a progenitor to land plant evolution. We have found a new TC which consists of two geometrically distinctive particle complexes complementary to one another in the plasma membrane and occasionally associated with microfibril impressions. In the E-fracture face is found a cluster of 8–50 closely packed particles, each with a diameter of 5–17 nm. Most of these particles are confined within an 80 nm circle. In the P-fracture face is found an 8-fold symmetrical arrangement of 10 nm particles circumferentially arranged around a 28 nm central particle. The TCs ofC. scutata are quite distinctive from the rosette/globule TCs of land plants. The 5.5×3.1 nm microfibril inC. scutata is also distinctive from the 3.5×3.5 nm microfibril typical of land plants. The phylogenetic implications of this unique TC in land plant evolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Muhlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere RL, Weinstein RS (1975) Freeze-etching nomenclature. Science 190: 54–56

    Google Scholar 

  • Brown RM Jr (1985) Cellulose microtibril assembly and orientation: recent developments. J Cell Sci [Suppl] 2: 13–32

    Google Scholar 

  • — (1989) Cellulose biogenesis and a decade of progress: a personal perspective. In: Schuerch C (ed) Cellulose and wood-chemistry and technology. Wiley, New York, pp 639–657

    Google Scholar 

  • — (1990) Algae as tools in studying the biosynthesis of cellulose, nature's most abundant macromolecule. In: Wiessner W, Robinson DG, Starr RC (eds) Experimental phycology, vol 1, cell walls and surfaces, reproduction, photosynthesis. Springer, Berlin Heidelberg New York Tokyo, pp 20–39

    Google Scholar 

  • —, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with the plasma membrane. Proc Natl Acad Sci USA 73: 143–147

    Google Scholar 

  • Delmer DP (1987) Cellulose biosynthesis. Annu Rev Plant Physiol 38: 259–290

    Google Scholar 

  • Delwiche CF, Graham LE, Thomson N (1989) Lignin-like compounds and sporopollenin inColeochaete, an algal model for land plant ancestry. Science 245: 399–401

    Google Scholar 

  • Domozych DS, Stewart KD, Mattox KR (1980) The comparative aspects of cell wall chemistry in the green algae (Chlorophyta). J Mol Evol 15: 1–12

    Google Scholar 

  • Emons AMC (1985) Plasma-membrane rosettes in root hairs ofEquisetum hyemale. Planta 163: 350–359

    Google Scholar 

  • — (1991) Role of particle rosettes and terminal globules in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 71–98

    Google Scholar 

  • Franz G, Blaschek W (1990) Cellulose. In: Dey PM (ed) Methods in plant biochemistry, vol 2, carbohydrates. Academic Press, London, pp 291–322

    Google Scholar 

  • Giddings TH Jr, Brower DL, Staehelin LA (1980) Visualization of particle complexes in the plasma membrane ofMicrasterias denticulata associated with the formation of cellulose fibrils in primary and secondary cell walls. J Cell Biol 84: 327–339

    Google Scholar 

  • Graham LE (1982) The occurrence, evolution, and phylogenetic significance of parenchyma inColeochaete Bréb. (Chlorophyta). Amer J Bot 69: 447–454

    Google Scholar 

  • — (1984)Coleochaete and the origin of land plants. Amer J Bot 71: 603–608

    Google Scholar 

  • —, Repavich WM (1989) Spermatogenesis inColeochaete pulvinata (Charophyceae): early blepharoplast development. Amer J Bot 76: 1266–1278

    Google Scholar 

  • —, Taylor C III (1986) The ultrastructure of meiospores ofColeochaete pulvinata (Charophyceae). J Phycol 22: 299–307

    Google Scholar 

  • —, Wilcox LW (1983) The occurrence and phylogenetic significance of putative placental transfer cells in the green algaColeochaete. Amer J Bot 70: 113–120

    Google Scholar 

  • Haigler CH (1991) Relationship between polymerization and crystallization in microfibril biogenesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 99–124

    Google Scholar 

  • Herth W (1983) Arrays of plasma-membrane “rosettes” involved in cellulose microfibril formation ofSpirogyra. Planta 159: 347–356

    Google Scholar 

  • — (1985 a) Plant cell wall formation. In: Robards AW (ed) Botanical microscopy. Oxford University Press, Oxford, pp 285–310

    Google Scholar 

  • — (1985 b) Plasma-membrane rosettes involved in localized wall thickening during xylem vessel formation ofLepidium sativum L. Planta 164: 12–21

    Google Scholar 

  • Hotchkiss AT Jr, Brown RM Jr (1987) The association of rosette and globule terminal complexes with cellulose microfibril assembly inNitella translucens var.axillaris (Charophyceae). J Phycol 23: 229–237

    Google Scholar 

  • — — (1989) Evolution of the cellulosic cell wall in the Charophyceae. In: Schuerch C (ed) Cellulose and wood-chemistry and technology. Wiley, New York, pp 591–609

    Google Scholar 

  • Itoh T, Brown RM Jr (1984) The assembly of cellulose microfibrils inValonia macrophysa Kutz. Planta 160: 372–381

    Google Scholar 

  • Kantz T, Bold HC (1969) Phycological studies vol IX, morphological and taxonomic investigations ofNostoc andAnabaena in culture. University of Texas, Austin, Texas (Univ Texas publ no 6924)

    Google Scholar 

  • Marchant HJ (1976) Plasmodesmata in algae and fungi. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York Tokyo, pp 59–80

    Google Scholar 

  • — (1977) Ultrastructure, development and cytoplasmic rotation of seta-bearing cells ofColeochaete scutata (Chlorophyceae). J Phycol 13: 28–36

    Google Scholar 

  • Mattox KR, Stewart KD (1984) Classification of the green algae: a concept based on comparative cytology. In: Irvine DEG, John D (eds) Systematics of the green algae. Academic Press, London, pp 29–72

    Google Scholar 

  • McLean B, Juniper BE (1986) The plasma membrane of youngChara internodal cells revealed by rapid freezing. Planta 169: 153–161

    Google Scholar 

  • Mizuta S, Roberts EM, Brown RM Jr (1989) A new cellulose synthesizing complex inVaucheria hamata and its relation to microfibril assembly. In: Schuerch C (ed) Cellulose and wood-chemistry and technology. Wiley, New York, pp 659–676

    Google Scholar 

  • Mishler BD, Churchill SP (1985) Transition to a land flora: phylogenetic relationships of the green algae and bryophytes. Cladistics 1: 305–328

    Google Scholar 

  • Mueller SC, Brown RM Jr (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol 84: 315–326

    Google Scholar 

  • — — (1982) The control of cellulose microfibril deposition in the cell wall of higher plants I. Can direct membrane flow orient cellulose microfibrils? Indirect evidence from freeze-fractured plasma membranes of maize and pine seedlings. Planta 154: 489–500

    Google Scholar 

  • Northcote DH (1991) Site of cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 165–176

    Google Scholar 

  • Quader H (1991) Role of linear terminal complexes in cellulose synthesis. In: Haigler CH, Weimer PJ (eds) Biosynthesis and biodegradation of cellulose. Marcel Dekker, New York, pp 51–69

    Google Scholar 

  • Reiss H-D, Schnepf E, Herth W (1984) The plasma membrane of theFunaria caulonema tip cell: morphology and distribution of particle rosettes, and kinetics of cellulose synthesis. Planta 160: 428–435

    Google Scholar 

  • Schuster RM (1976) The phylogeny of the Hapaticae. In: Clarke GCS, Duckett JG (eds) Bryophyte systematics. Academic Press, London, pp 41–82 (Systematics Association Special Volume no 14)

    Google Scholar 

  • — (1984) Morphology, phylogeny and classification of the Anthocerotae. In: New manual of bryology. Hattori Botanical Laboratory, Nichinan, Japan, pp 1071–1092

    Google Scholar 

  • Sluiman HJ (1983) The flagellar apparatus of the zoospore of the filamentous green algaColeochaete pulvinata: absolute configuration and phylogenetic significance. Protoplasma 115: 160–175

    Google Scholar 

  • — (1985) A cladistic evaluation of the lower and higher green plants (Viridiplantae). Plant Syst Evol 149: 217–232

    Google Scholar 

  • Staehelin LA, Giddings TH (1982) Membrane-mediated control of microfibrillar order. In: Subtelny S, Green PB (ed) Developmental order: its origin and regulation. AR Liss, New York, pp 133–147

    Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32: 420–424

    Google Scholar 

  • Wada M, Staehelin LA (1981) Freeze-fracture observations on the plasma membrane, the cell wall and the cuticle of growing protonemata ofAdiantum capillus-veneris L. Planta 151: 462–468

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okuda, K., Brown, R.M. A new putative cellulose-synthesizing complex ofColeochaete scutata . Protoplasma 168, 51–63 (1992). https://doi.org/10.1007/BF01332650

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01332650

Keywords

Navigation