Skip to main content
Log in

Numerical study on patterning of shear bands in a Cosserat continuum

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Numerical simulation of patterns of shear bands in biaxial compression tests using an elasto-plastic Cosserat constitutive equation is presented. Random distribution of the material properties acts as a trigger for the localized deformation. Two types of stress-strain curves, namely strain softening and strain softening followed by strain hardening, are investigated. It is shown that the characteristic of the stress-strain curve is crucial for the patterning of shear bands. While calculations with the stress-strain curve with solely softening yield only one single shear band, a flock of shear bands can be obtained with the stress-strain curve with softening followed by hardening. Benefited from the characteristic length provided by the Cosserat elasto-plastic constitutive equation, the dependence of the calculation on the mesh-size is avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis, E. C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol.106, 326–334 (1984).

    Google Scholar 

  2. Bardet, J. P., Proubet, J.: A numerical investigation of the structure of persistent shear bands. Géotechnique41, 599–613 (1992).

    Google Scholar 

  3. Bathe, K. J.: Finite element procedures in engineering analysis. Englewood Cliffs: Prentice-Hall 1982.

    Google Scholar 

  4. Bazant, Z. P.: Crack band model for fracture of geomaterials. In: Proc. 4th Int. Conf. in Numer. Methods in Geomech., vol. 3 (Eisenstein, Z., ed.), pp. 1137–1152. Edmonton, Canada, 1982.

  5. Bazant, Z. P., Lin, F. B.: Nonlocal yield limit degradation. Int. J. Num. Meth. Eng.26, 1805–1823 (1988).

    Google Scholar 

  6. Becker, M., Lippmann, H.: Plane plastic flow of granular model material, experimental set-up and results. Arch. Mech. (Warszawa)29, 829–846 (1977).

    Google Scholar 

  7. de Borst, R.: Simulation of localisation using Cosserat theory. In: Proc. 2nd Int. Conf. on Computer Aided Design of Concrete Structures (Bićanić, N., Mang, H. A., eds.), pp. 931–944. Swansea: Pineridge Press 1990.

    Google Scholar 

  8. de Borst, R.: Simulation of strain localisation: a reapprasal of the Cosserat continuum. Eng. Comp.8, 317–332 (1991).

    Google Scholar 

  9. de Borst, R., Mühlhaus, H. B., Pamin, J., Sluys, L. Y.: Computational modelling of localization of deformation. In: Proc. 3rd Int. Conf. Comp. Plasticity (Owen, D. R. J., Hinton, E., Onate, E., eds.) Swansea: Pineridge Press 1992.

    Google Scholar 

  10. Cundall, P. A., Strack, O. D. L.: A discrete numerical model for granular assemblies. Géotechnique29, 47–65 (1979).

    Google Scholar 

  11. Desrues, J.: La localisation de la deformation dans les matériaux granulaire. Dissertation, Institut National Polytechnique de Grenoble, Grenoble, 1984.

    Google Scholar 

  12. Drescher, A., Vardoulakis, I.: Geometric softening in triaxial tests on granular materials. Géotechnique32, 291–303 (1982).

    Google Scholar 

  13. Fukushima, S., Tatsuoka, F.: Strength and deformation characteristics of saturated sand at extremely low pressures. Soils Found.24, 30–48 (1984).

    Google Scholar 

  14. Gudehus, G.: Einige Beiträge der Bodenmechanik zur Entstehung und Auswirkung von Diskontinuitäten. Felsbau4, 190–195 (1986).

    Google Scholar 

  15. Günther, W.: Zur Statik und Kinematik des Cosserat-Kontinuums. Abh. Braunschweigische Wiss.10, 195–213 (1958).

    Google Scholar 

  16. Han, C., Vardoulakis, I.: Plane-strain compression experiments on water saturated fine-grained sand. Géotechnique41, 49–78 (1991).

    Google Scholar 

  17. Joseph, D. D., Saut, J. C.: Short-wave instabilities and ill-posed initial value problems. Theoret. Comput. Fluid Dyn.1, 191–227 (1990).

    Google Scholar 

  18. Kanatani, K.: A micropolar continuum theory for granular materials. Int. J. Eng. Sci.17, 419–432 (1979).

    Google Scholar 

  19. Leroy, Y., Ortiz, M.: Finite element analysis of strain localization in frictional materials. Int. J. Numer. Anal. Meth. Geomech.13, 53–74 (1989).

    Google Scholar 

  20. Loret, B., Prevost, J. H.: Dynamic strain localization in fluid-saturated porous media. ASCE J. Eng. Mech.117, 907–922 (1991).

    Google Scholar 

  21. Macvean, D. B.: Die Elementarbeit in einem Kontinuum und die Zuordnung von Spannungs- und Verzerrungstensoren. ZAMP19, 157 (1968).

    Google Scholar 

  22. Mandl, G.: Mechanics of tectonic faulting. Amsterdam: Elsevier 1988.

    Google Scholar 

  23. Molenkamp, F.: Comparison of frictional material models with respect to shear band initiation. Géotechnique35, 127–143 (1985).

    Google Scholar 

  24. Mühlhaus, H. B.: Continuum models for layered and blocky rock. In: Comprehensive rock engineering (Hudson, J. A., ed.), Vol. 2. Analysis and design methods. Oxford: Pergamon Press 1991.

    Google Scholar 

  25. Mühlhaus, H. B., Vardoulakis, I., Tejchman, J.: A generalized flow theory for granular materials. Lect. Inst. Soil Mechanics and Rock Mechanics, Univ. Karlsruhe 1987.

  26. Nadai, A.: Theory of flow and fracture of solids. New York: McGraw-Hill 1950.

    Google Scholar 

  27. Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials, effects of particle rolling. Mech. Materials1, 269–283 (1982).

    Google Scholar 

  28. Ortiz, M., Simo, I. C.: An analysis of a new class of integration algorithms for elastoplastic constitutive relation. Int. J. Numer. Meth. Eng.23, 353–366 (1986).

    Google Scholar 

  29. Palmer, A. C., Rice, J. R.: The growth of slip surfaces in the progressive failure of overconsolidated clay. Proc. Roy. Soc. (London)A232, 527–548 (1986).

    Google Scholar 

  30. Rudnicki, J. W., Rice, J. R.: Conditions for the localization of deformation in pressure-sensitive dilatant solids. J. Mech. Phys. Solids23, 371–394 (1975).

    Google Scholar 

  31. Schäfer, H.: Versuch einer Elastizitätstheorie des zweidimensionalen ebenen cosserat-Kontinuums. Miszellaneen der Angewandten Mechanik, Festschrift Tolmien, W. Berlin: Akademie-Verlag 1962.

    Google Scholar 

  32. Shawki, T. G., Clifton, R. J.: Sheart band formation in thermal viscoplasticity. Mech. Mater.8, 13–43 (1989).

    Google Scholar 

  33. Sluys, L. J., de Borst, R.: Strain softening under dynamic loading conditions. In: Proc. 2nd Int. Conf. on Computer Aided Analysis and Design of Concrete Structures (Biéanić, N., Mang, H. A., eds.), pp. 1091–1104, Zell am See, Austria, 1990.

  34. Tatsuoka, F., Nakamura, S., Huang, C. C., Tani, K.: Strength anisotropy and shear band inclination in plane strain tests of sand. Soils Found.30, 35–54 (1990).

    Google Scholar 

  35. Tejchman, J.: Scherzonenbildung und Verspannungseffekte in Granulaten unter Berücksichtigung von Korndrehungen. Veröff. Inst. Boden- und Felsmechanik, Univ. Karlsruhe 1989.

  36. Tejchman, J., Lizcano, A.: Experiments on the patterning of shear zones in a simple shear apparatus. Int. Rep. Inst. Soil Mechanics and Rock Mechanics, Univ. Karlsruhe 1992.

  37. Uesugi, M.: Friction between dry sand and construction. Dissertation, Tokyo Institute of Technology 1987.

  38. Vardoulakis, I.: Scherfugenbildung in Sandkörpern als Verzweigungsproblem. Veröff. Inst. Boden- und Felsmechanik, Univ. Karlsruhe 1977.

  39. Vermeer, P. A.: van Langen, H.: Soil collapse computations with finite elements. Ing. Arch.59, 221–236 (1989).

    Google Scholar 

  40. Wood, R. D.: Finite element analysis of plane couple-stress problems using first order stress functions. Int. J. Num. Meth. Eng.26, 489–509 (1988).

    Google Scholar 

  41. Wu, W.: A unified numerical integration formula for the perfectly plastic von Mises model. Int. J. Num. Meth. Eng.30, 491–504 (1990).

    Google Scholar 

  42. Wu, W., Sikora, Z.: Localized bifurcation in hypoplasticity. Int. J. Eng. Sci.20, 195–201 (1991).

    Google Scholar 

  43. Wu, W., Kolymbas, D.: On some issues in trixial extension tests. ASTM Geotech. Testing J.14, 276–287 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejchman, J., Wu, W. Numerical study on patterning of shear bands in a Cosserat continuum. Acta Mechanica 99, 61–74 (1993). https://doi.org/10.1007/BF01177235

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01177235

Keywords

Navigation