Skip to main content
Log in

Acceleration waves in condensing gases

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The flow of a condensing gas is treated as a two-phase-flow, in which the size of the condensate-droplets may vary due to transfer of mass, momentum, and heat; the formation of new droplets is disregarded. An ordinary differential equation for the temporal variation of the amplitude of a one-dimensional acceleration wave is deduced, which holds along the path of the wave. Especially, if the wave propagates into a mixture at rest with spatial variation of the volume fraction of the droplets, the variation of the amplitude is given by the sum of three terms, one of which is quadratic in the amplitude and the others are linear. The quadratic term is solely determined by nonlinear effects in the pure gas and leads to a growth. The first linear term is given by the dissipative effect of the velocity relaxation; this term is the same as for the flow of a mixture of a gas and small solid particles. The second linear term is determined by the combined dissipative effects of the temperature relaxation and the mass transfer; both linear terms lead to a decay. Further, conditions are discussed, on which shock waves are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas, T. Y.: The growth and decay of sonic discontinuities in ideal gases. J. Math. Mech.6, 455–469 (1957).

    Google Scholar 

  2. Varley, E., Cumberbatch, E.: Non-linear theory of wave-front propagation. J. Inst. Maths. Applics.1, 101–112 (1965).

    Google Scholar 

  3. Varley, E., Dunwoody, J.: The effect of non-linearity at an acceleration wave. J. Mech. Phys. Solids13, 17–28 (1965).

    Google Scholar 

  4. Becker, E., Schmitt, H.: Die Entstehung von ebenen, zylinder- und kugelsymmetrischen Verdichtungsstößen in relaxierenden Gasen. Ing.-Arch.36, 335–347 (1968).

    Google Scholar 

  5. Becker, E.: Die Entstehung von Verdichtungsstößen in kompressiblen Medien. Ing.-Arch.39, 302–316 (1970).

    Google Scholar 

  6. Bürger, W.: Relaxation effects on acceleration waves. Fluid Dyn. Trans.6, II, 77–86 (1972).

    Google Scholar 

  7. Coleman, B. D., Gurtin, M. E.: Growth and decay of discontinuities in fluids with internal state variables. Phys. Fluids10, 1454–1458 (1967).

    Google Scholar 

  8. Schmitt, H.: Entstehung von Verdichtungsstößen in strahlenden Gasen. ZAMM52, 529–534 (1972).

    Google Scholar 

  9. Schmitt, H.: Entstehung von Verdichtungsstößen in realen Gasen. Darmstadt: D. Thesis 1971.

  10. Singh, R. S., Sharma, V. D.: Amplification of finite-amplitude waves in a radiating gas. AIAA-J.19, 252–254 (1981).

    Google Scholar 

  11. Srinivasan, S., Ram, R.: Propagation of sonic waves in radiating gases. ZAMM57, 191–193 (1977).

    Google Scholar 

  12. Schmitt, H.: Fortpflanzung schwacher Unstetigkeiten bei nichtlinearen Wellen-ausbreitungsvorgängen. ZAMM48, T241-T244 (1968).

    Google Scholar 

  13. Teipel, I.: Über die Fortpflanzung von schwachen Stoßwellen in der Magnetogasdynamik. ZAMM46, T221-T223 (1966).

    Google Scholar 

  14. Singh, R. S., Sharma, V. D.: Propagation of discontinuities along bi-characteristics in magnetohydrodynamics. Phys. Fluids23, 648–649 (1980).

    Google Scholar 

  15. Schmitt, H.: Comments on “Propagation of discontinuities along bi-characteristics in magnetohydrodynamics”. Phys. Fluids25, 214 (1982).

    Google Scholar 

  16. Schmitt-v. Schubert, B.: Strömungen von Gasen mit festen Teilchen. Darmstadt: D. Thesis 1968.

  17. Pai, S. I., Sharma, V. D., Menon, S.: Time evolution of discontinuities at the wave head in a non-equilibrium two-phase flow of a mixture of a gas and dusty particles. Acta Mech.46, 1–13 (1983).

    Google Scholar 

  18. Bürger, W.: Schwache Unstetigkeiten in der modernen Kontinuumsmechanik. In: Methoden und Verfahren der mathematischen Physik, Band II (Martensen, E., Brosowski, B., eds.). Mannheim: Bibliogr. Inst. 1969.

    Google Scholar 

  19. Thomas, T. Y.: Extended compatibility conditions for study of surfaces of discontinuity in continuum mechanics. J. Math. Mech.6, 311–322 (1957).

    Google Scholar 

  20. Jeffrey, A.: The development of jump discontinuities in non-linear hyperbolic systems of equations in two independent variables. Arch. Rat. Mech. Anal.14, 27–37 (1963).

    Google Scholar 

  21. Yamamoto, Y., Kobayashi, S., Takano, A.: Analysis on the propagation of finite amplitude disturbances in gas-particle mixtures. Trans. Japan Soc. Aero. Space Sci.22, 229–240 (1980).

    Google Scholar 

  22. Schmitt-v. Schubert, B.: Änderung der Größe von Stickstofftröpfchen in einer Strömung von gasförmigem Stickstoff. DFVLR-FB 83-12 (1983).

  23. Millikan, R. A.: The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surfaces. Phys. Rev.22, 1–23 (1923).

    Google Scholar 

  24. Vincenti, W. G., Kruger, C. H.: Introduction to physical gas dynamics, p. 414. New York-London: John Wiley 1965.

    Google Scholar 

  25. Lang, H.: Heat and mass exchange of a droplet in a polyatomic gas. Phys. Fluids26, 2109–2114 (1983).

    Google Scholar 

  26. Truesdell, C., Toupin, R. A.: The classical field theories, p. 504. In: Encyclopedia of physics, Vol. III/1 (Flügge, S., ed.). Berlin-Heidelberg: Springer 1960.

    Google Scholar 

  27. Marconi, F., Rudman, S., Calia, V.: Numerical study of one-dimensional unsteady particle-laden flows with shocks. AIAA-J.19, 1294–1301 (1981).

    Google Scholar 

  28. Schmitt, H.: Einfluß von Kondensationsvorgängen auf die Entstehung von Verdichtungsstößen ZAMM65, T236-T237 (1985).

    Google Scholar 

  29. Bürger, W.: Zur Entstehung von Verdichtungsstößen beim “Kolbenversuch” in Gasen mit thermodynamischer Relaxation. ZAMM46, 149–151 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, H. Acceleration waves in condensing gases. Acta Mechanica 78, 109–128 (1989). https://doi.org/10.1007/BF01174004

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01174004

Keywords

Navigation