Skip to main content
Log in

Comparisons of VHF radar, optical, and temperature fluctuation measurements ofC 2 n ,r 0 andθ 0

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

Comparisons are made of profiles of the refractive index structure parameter (C 2 n ) and two derived quantities, transverse coherence length (r 0) and isoplanatic angle (θ 0), from measurements taken with a suite of instruments including a 49.25 MHz pulsed Doppler radar with a phased array antenna, an isoplanometer, anr 0 system, a stellar scintillometer, and temperature fluctuation sensors mounted on a thermosonde. The radar, which obtained data from 2 to 22 km above ground level (AGL), was operated to provide 150 m height resolution ofC 2 n . The stellar scintillometer obtained aC 2 n profile defined at seven heights from 2.2 to 18.5 km AGL, while the thermosonde obtained and transmitted data every 20 m. The isoplanometer andr 0 system provided integratedpath (ground-to-space) values.

The method used for calibrating the radar is discussed as well as the angular dependency of radar-returned power as influenced by specular reflections. The method used for extracting opticalC 2 n from radar reflectivity by eliminating humidity effects is discussed, as is speculation as to differences in results found from the different measurement techniques.

Zusammenfassung

Vorliegende Studie präsentiert einen Profilvergleich des refraktiven Index-Struktur-Parameters (C 2 n ) und zwei abgeleiteter Größen, der transversalen Koherenzlänge (r 0) und des isoplanen Winkels (θ 0), aufgrund von Messungen mit einer Reihe von Instrumenten, u.a. mit einem gepulsteten 49.25-MHz-Doppler-Radar mit einer Phasenfeld-Antenne, einem Isoplanometer, einemr 0-System, einem Stellar-Scintillometer und Temperaturschwankungs-Sensoren auf einer Thermosonde. Der Radar, mit dem Datenmaterial in einer Bandbreite von 2 bis 22 km über Grund gesammelt werden konnte, war auf Datenmessungen vonC 2 n in einer Auflösung von 150 m eingestellt.

Das Stellar-Scintillometer erbrachte einC 2 n -Profil definiert für 7 Höhenstufen im Bereich von 2.2 bis 18.5 km über Grund während die Thermosonde Werte in 20 m-Stufen ermittelte. Das Isoplanometer und dasr 0-System erbrachten Integral-werte bis zu einer bestimmten Höhe über Grund.

Sowohl das Eichungsverfahren des Radar, als auch die Winkelabhängigkeit der Stärke des reflektierten Signals von spiegelnder Reflexion werden im folgenden besprochen, als auch die Methode zur Filterung von optischen Reflexionen imC 2 n aus den Radarreflexen durch Ausschaltung von Feuchtigkeitseinwirkungen. Zuletzt werden die Unterschiede in den Resultaten verschiedener Messungsmethoden zu klären versucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, B. W., 1981:Meso-scale Atmospheric Circulation. “Lee Waves.” London: Academic Press, Chapter 2, pp. 25–76.

    Google Scholar 

  • Babcock, H. W., 1963: Instrumental recording of astronomical seeing.Publ. Astron. Soc. Pac. 75, 1–8.

    Google Scholar 

  • Brown, J. H., Good, R. E., Bench, P. M., Faucher, G. E., 1982: Sonde Experiments for Comparative Measurements of Optical Turbulence, AFGL-TR-82-0079, AD-A118740, Air Force Geophysics Laboratory, Hanscom Air Force Base, MA.

    Google Scholar 

  • Couder, A., 1936: Optique atmospherique-measure photographique de l'agitation des images stellaries.C. R. Acad. Sci. Paris 203, 609–611.

    Google Scholar 

  • Czechowsky, P., Klostermeyer, J., Röttger, J., Rüster, R., Schmidt, G., Woodman, R. F., 1976: The SOUSY-VHF-radar for tropo-, strato- and mesospheric sounding. In: Proceedings of the 17th Conference on Radar Meteorology, American Meteorological Society, Boston, MA, 349–353.

    Google Scholar 

  • Czechowsky, P., Schmidt, G., Rüster, R., 1984: The mobile SOUSY Doppler Radar: Technical design and first results,Radio Science 19, 441–450.

    Google Scholar 

  • Eaton, F. E., Garvey, D. M., Dewan, E., Beland, R., 1985a: Transverse Coherence Length (r 0) Observations. In: Proceedings of SPIE, Vol. 551, Adaptive Optics, April 10–11, Arlington, VA, 42–51.

    Google Scholar 

  • Eaton, F. D., Peterson, W. A., Hines, J. R., Fernandez, G., 1985b: Isoplanatic angle direct measurements and associated atmospheric conditions.Applied Optics 24, 3264–3273.

    Google Scholar 

  • Forbes, F. F., 1982: Dome induced image motion, SPIE Proc., Vol. 332, Advanced Technology Telescopes, Tucson, AZ.

    Google Scholar 

  • Fried, D. L., 1966: Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,J. Opt. Soc. Am. 567, 1372–1379.

    Google Scholar 

  • Gage, K. S., Green, J. L., 1978: Evidence for specular reflection from monostatic VHF radar observations of the stratosphere,Radio Sci. 13, 991–1001.

    Google Scholar 

  • Good, R. E., Watkins, B. J., Quesada, A. F., Brown, J. H., Loriot, G. B., 1982: Radar and optical measurements ofC 2 n .Applied Optics 21, 3373–3376.

    Google Scholar 

  • Gossard, E. E., Neff, W. D., Zamora, R. J., Gaynor, J. E., 1984: The fine structure of elevated refractive layers: Implications for over-the-horizon propagation and radar sounding systems.Radio Science 19, 1523–1533.

    Google Scholar 

  • Gossard, E. E., Richter, J. H., Atlas, D., 1970: Internal waves in the atmosphere from high-resolution radar measurements.J. Geophys. Res. 75, 3523–3536.

    Google Scholar 

  • Gossard, E. E., Strauch, R. G., 1983:Radar Observation of Clear Air and Clouds. New York: Elsevier, 280 pp.

    Google Scholar 

  • Green, J. L., Vernin, J., Van Zandt, T. E., Clark, W. L., Warnock, J. M., 1984: A comparison of optical and radar measurements ofC 2 n profiles, 22nd Conf. of Radar Meteorology, 10–13 September 1984, Zurich, Switzerland, pp. 470–475.

  • Harlan, E. A., Walker, M. F., 1965: A star-trail telescope for astronomical site-testing.Publ. Astron. Soc. Pac. 77, 246–252.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cote, O. R., Izumi, Y., 1976: Turbulent structure in the convective boundary layer.J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Kjelaas, A. G., Ochs, G. R., 1974: Study of divergence in the boundary layer using optical propagation techniques.J. Appl. Meteor. 13, 242–248.

    Google Scholar 

  • Lilly, D. K., Zipser, E. I., 1972: The front range windstorm of 11 January 1972.Weatherwise 25, 56–63.

    Google Scholar 

  • Meinel, A. B., 1960: Astronomical seeing and observatory site selection.Telescopes Kuiper, G. P., Middlehurst, B. M. (eds.). Chicago: Univ. Press, 255 pp.

    Google Scholar 

  • Norton, C., Hoidale, G., 1976: The diurnal variation of mixing height by season over White Sands Missile Range, NM.Mon. Wea. Rev. 104, 1317–1320.

    Google Scholar 

  • Ochs, G. R., Cartwright, W. D., Russell, D. D., 1980: OpticalC 2 n Instrument Model II, NOAA Tech. Memo ERL WPL-51, National Oceanic and Atmospheric Administration, Boulder, CO.

    Google Scholar 

  • Ochs, G. R., Ting-i Wang, Merrem, F., 1977: Stellar Scintillometer Model II for Measurements of Refractive-Tur-bulence Profiles, NOAA Tech. Memo ERL WPL-25, National Oceanic and Atmospheric Administration, Boulder, CO.

    Google Scholar 

  • Ottersten, H., 1969: Radar backscattering from the turbulent clear atmosphere,Radio Science 4, 1251–1255.

    Google Scholar 

  • Peterman, K. R., 1986: Wind profiling technology. 23rd Conf. on Radar Meteorology/Conf. on Cloud Physics, 22–26 September, Snowmass, CO, 34–37.

  • Roddier, F., 1981: The effects of atmospheric turbulence in optical astronomy.Prog. Opt. XIX, 283–368.

    Google Scholar 

  • Röttger, J., 1980: Reflection and scattering of VHF radar signals from atmospheric refractivity structures.Radio Science 15, 259–276.

    Google Scholar 

  • Röttger, J., Liu, C. H., 1978: Partial reflection and scattering of VHF radar signals from the clear atmosphere.Geophys. Res. Lett. 5, 357–360.

    Google Scholar 

  • Starr, J. R., Browning, K. A., 1972: Observations of lee waves by high-power radar.Quart. J. Roy. Met. Soc. 98, 73–85.

    Google Scholar 

  • Tatarski, V. I., 1961:Wave Propagation in a Turbulent Medium. New York: McGraw-Hill, 285 pp.

    Google Scholar 

  • Van Zandt, T. E., Green, J. L., Gage, K. S., Clark, W. L., 1978: Vertical profiles of refractivity turbulence structure constant: Comparison of observations by the sunset radar with a new theoretical model.Radio Sci. 13, 819–829.

    Google Scholar 

  • Van Zandt, T. E., Gage, K. S., Warnock, J. M., 1981: An improved model for the calculation of profiles ofC 2 n and in the free atmosphere from background profiles of wind, temperature, and humidity, Preprints, Twentieth Conference on Radar Meteorology, American Meteorological Society, Boston, MA, pp. 129–135.

    Google Scholar 

  • Whitford, A. E., Stebbins, J., 1936: Photoelectric measurement of scintillation of stars.Publ. Am. Astron. Soc. 8, 228.

    Google Scholar 

  • Wyngaard, J. C., 1973: Surface-Layer turbulence. Workshop of Micrometeorology. Boston, MA: American Meteorological Society, 101–149.

    Google Scholar 

  • Wyngaard, J. C., Izumi, Y., Collins, S. A., 1971: Behavior of the refractive-index-structure parameter near the ground.J. Opt. Soc. Am. 16, 1646–1650.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 14 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eaton, F.D., Peterson, W.A., Hines, J.R. et al. Comparisons of VHF radar, optical, and temperature fluctuation measurements ofC 2 n ,r 0 andθ 0 . Theor Appl Climatol 39, 17–29 (1988). https://doi.org/10.1007/BF00867654

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00867654

Keywords

Navigation