Skip to main content
Log in

PV morphology of a frontal-wave development

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

A case study is performed of a frontal-wave development on a trailing cold front in the Atlantic. The data base comprises principally the analysis and forecast fields of the global operational weather prediction model of the ECMWF, and the development itself is viewed from a potential vorticity (PV) perspective. It is shown that the ambient atmosphere contained three distinct and salient PV features: at the surface a frontal baroclinic zone; in the lower troposphere a co-aligned, moisture laden elongated band (∼2000 km long and ∼400 km wide) of enhanced PV; and at upper-levels a richly structured, southward extending PV pool. In the developments first phase a large-scale undulation of the surface frontal zone was accompanied by an in-phase movement of the upper-level anomaly. In a second phase two low-level wave features developed around 1000 km apart, and the resulting wave depressions were accompanied by a distortion of the baroclinic zone and the break-up of the low-level PV-band. In the subsequent mature phase the dominant secondary cyclone attained ∼500 km scale in the horizontal and acquired a coherent PV structure in the vertical.

A PV-based diagnostic analysis provides evidence of both the self development of the PV features and their synergetic interplay. It also forms the basis for a comparison of the event with traditional and recent hypotheses for frontal-wave development.

On the basis of the diagnosed relationship between the customarily depicted surface frontal-wave cups and the low-level PV-band, it is suggested that the segmentation of the latter provides a useful tool for monitoring and forecasting secondary developments. Also in the context of numerical weather prediction brief consideration is given to the sensivity of the frontal-wave development and structure to the spatial resolution of the associated forecast model and the specification of the initial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appenzeller, C., Davies, H. C., 1992: Structure of stratospheric intrusions into the troposphere.Nature,358, 570–572.

    Article  Google Scholar 

  • Batchelor, G. K., 1967:An Introduction to Fluid Dynamics. Cambridge: Cambridge University Press, 615 pp.

    Google Scholar 

  • Bell, R. S., Dickinson, A., 1987: The Meteorological Office operational numerical weather prediction system.Scientific paper Met. O 979,41, 1.

    Google Scholar 

  • Berrisford, P., 1988: Potential vorticity in extratropical cyclones, Ph.D. thesis, University of Reading, 168 pp.

  • Bishop, C. H., Thorpe, A. J., 1994: Frontal wave stability during moist deformation frontogenesis. Part 2. The suppression of non-linear wave development.J. Atmos. Sci., (in press).

  • Bjerknes, J., 1919: On the structure of moving cyclones.Geofys. Publ.,1, 8.

    Google Scholar 

  • Bjerknes, J., Solberg, H., 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation.Geofys. Pub.,3, 18.

    Google Scholar 

  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows.Quart. J. Roy. Meteor. Soc.,92, 325–334.

    Article  Google Scholar 

  • Davies, H. C., Schär, C., Wernli, H., 1991: The palette of fronts and cyclones within a baroclinic wave development.J. Atomos. Sci.,48, 1666–1689.

    Article  Google Scholar 

  • Davies, H. C., Bishop, C. H., 1994: Early edge waves and rapid development.J. Atmos. Sci.,51, 1930–1946.

    Article  Google Scholar 

  • Davis, C. A., Emanuel, K. A., 1991: Potential vorticity diagnostic of cyclogenesis.Mon. Wea. Rev.,119, 1929–1953.

    Article  Google Scholar 

  • Dritschel, D. G., Haynes, P. H., Juckes, M. N., Shepherd, T. G., 1991: The stability of a two-dimensional vorticity filament under uniform strain.J. Fluid. Mech.,230, 647–665.

    Article  Google Scholar 

  • Exner, F. M., 1920: Anschauungen über kalte und warme Luftströmungen nahe der Erdoberfläche und ihre Rolle in den niedrigen Zyklonen.Geografiska. Annaler. 2(3), 225–236.

    Article  Google Scholar 

  • Farrell, B., 1985: Transient growth of damped baroclinic waves.J. Atmos. Sci.,42, 2718–2727.

    Article  Google Scholar 

  • Gill, A. E., 1982:Atmosphere-Ocean Dynamics. London: Academic Press, 622 pp (Int. Geophysics Series).

    Google Scholar 

  • Helmholtz, H., 1888: Ueber atmosphärische Bewegungen.Sitz. Bericht. d. Preuss. Akad. Wiss. Berlin. I, 26, 647–663.

    Google Scholar 

  • Hibbard, W., Uccellini, L., Santek, D., Brill, K., 1989: Application of the 4-D McIDAS to a model diagnostic study of the President's Day cyclone.Bull. Amer. Meteor. Soc.,70, 1394–1403.

    Article  Google Scholar 

  • Hoskins, B. J., Draghici, I., Davies, H. C., 1978: A new look at the ω equation.Quart. J. Roy. Meteor. Soc.,104, 31–38.

    Google Scholar 

  • Hoskins, B. J., McIntyre, M. E., Robertson, A. W., 1985: On the use and significance of isentropic potential vorticity maps.Quart. J. Roy. Meteor. Soc.,111, 877–946.

    Article  Google Scholar 

  • Hoskins, B., Berrisford, P., 1988: A potential vorticity perspective of the storm of 15–16 October 1987.Weather 43, 122–129.

    Article  Google Scholar 

  • Hoskins, B. J., 1990: Theories of cyclogenesis. Extratropical cyclones: The Erik Palmén Memorial Volume.Amer. Meteor. Soc., Boston, 63–80.

    Google Scholar 

  • Joly, A., Thorpe, A. J., 1990: Frontal instability generated by tropospheric potential vorticity anomalies.Quart. J. Roy. Meteor. Soc.,116, 525–560.

    Article  Google Scholar 

  • Joly, A., Thorpe, A. J., 1991: The stability of time dependent flows: An application to fronts in developing baroclinic waves.J. Atmos. Sci.,48, 163–182.

    Article  Google Scholar 

  • Kleinschmidt, E., 1950: Ueber Aufbau und Entstehung von Zyklonen, Teil 2.Meteor Rdsch.,3/4, 54–61.

    Google Scholar 

  • Malardel, S., Joly, A., Courbet, F., Courtier, P., 1993: Nonlinear evolution of ordinary frontal waves induced by low-level potential vorticity anomalies.Quart. J. Roy. Meteor. Soc.,119, 681–713.

    Article  Google Scholar 

  • Margules, M., 1906: Zur Sturmtheorie.Meteor. Z.,23, 481–497.

    Google Scholar 

  • Mattocks, C., Bleck, R., 1986: Jet streak dynamics and geostrophic adjustment processes during the initial stages of lee cyclogenesis.Mon. Wea. Rev.,114, 2033–2056.

    Article  Google Scholar 

  • Meachem, S. P., Flierl, G. R., 1990: Vortices in shear.Dyn. Atmos. Oceans,14, 333–386.

    Article  Google Scholar 

  • Meacham, S. P., 1992: Quasigeostrophic, ellipsoidal vortices in a stratified fluid.Dyn. Atmos. Oceans,16, 189–223.

    Article  Google Scholar 

  • Monk, G. A., 1989: Satellite photographs.Meteor. Magazine,118, 272.

    Google Scholar 

  • Moore, G. W. K., Peltier, W. R., 1987: Cyclogenesis in frontal zones.J. Atmos. Sci.,44, 384–408.

    Article  Google Scholar 

  • Müller, J. C., Davies, H. C., Schär, C., 1989: An unsung mechanism for frontogenesis and cyclogenesis.J. Atmos. Sci.,46, 3664–3672.

    Article  Google Scholar 

  • Nielsen, J. W., Dole, R. M., 1992: A survey of extratropical cyclone characteristics during GALE.Mon. Wea Rev.,120, 1156–1167.

    Article  Google Scholar 

  • Orlanski, I., 1968: Instability of frontal waves.J. Atmos. Sci.,25, 178–200.

    Article  Google Scholar 

  • Petterssen, S., Smebye, S. J., 1971: On the development of extratropical cyclones.Quart. J. Roy. Meteor. Soc.,97, 457–482.

    Article  Google Scholar 

  • Ratcliffe, R. A. S., 1990: Review of autumn 1989 in the northern hemisphere.Weather,45, 64–65.

    Article  Google Scholar 

  • Reed, R. J., Stoelinga, M. T., 1992: A model-aided study of the origin and evolution of the anomalously high potential vorticity in the inner region of rapidly deepening marine cyclone.Mon. Wea. Rev.,120, 893–913.

    Article  Google Scholar 

  • Roebber, P. U., 1984: Statistical analysis and updated climatology of explosive cyclones.Mon. Wea. Rev.,112, 1577–1589.

    Article  Google Scholar 

  • Sanders, F., Gyakum, J. R., 1980: Synoptic dynamic climatology of the ‘bomb’.Mon. Wea. Rev.,108, 1589–1606.

    Article  Google Scholar 

  • Sawyer, M. A., 1950: Formation of secondary depressions in relation to the thickness pattern.Meteor. Magazine,79, 1–5.

    Google Scholar 

  • Schär, C., Davies, H. C., 1990: An instability of mature cold fronts.J. Atmos. Sci.,47, 929–950.

    Article  Google Scholar 

  • Shutts, G. J., 1990: Dynamical aspects of the October strom, 1987: A study of successful finemesh simulation.Quart. J. Roy. Meteor. Soc.,116, 1315–1347.

    Article  Google Scholar 

  • Simmons, A. J., Burridge, D. M., Jarraud, M., Girard, C., Wergen, W., 1989: The ECMWF medium-range prediction models development of the numerical formulations and the impact of increased resolution.Meteorol. Atmos. Phys.,40, 28–60.

    Article  Google Scholar 

  • Sinton, D. M., Mechoso, C. R., 1984: Nonlinear evolution of frontal waves.J. Atmos. Sci.,41, 3501–3517.

    Article  Google Scholar 

  • Starr, V. P., Neiburger, M., 1940: Potential vorticity as a conserved property.J. Marine Res.,3, 202–210.

    Google Scholar 

  • Steinacker, R. A., 1992: Dynamical aspects of frontal analysis.Meteorol. Atmos. Phys.,48, 93–103.

    Article  Google Scholar 

  • Sutcliffe, R. C., Forsdyke, A. G., 1950: The theory and use of upper air thickness patterns in forecasting.Quart. J. Roy. Meteor. Soc.,76, 189–217.

    Article  Google Scholar 

  • Thorncroft, C. D., Hoskins, B. J., 1990: Frontal cyclogenesis.J. Atmos. Sci.,47, 2317–2336.

    Article  Google Scholar 

  • Thorncraft, C. D., Hoskins, B. J., McIntyre, M. E., 1993: Two paradigms of baroclinicwave life cycle behaviour.Quart. J. Roy. Meteor. Soc.,119, 17–55.

    Article  Google Scholar 

  • Thorpe, A. J., Emanuel, K. A., 1985: Frontogenesis in the presence of small stability to slantwise convection.J. Atmos. Sci.,42, 1809–1824.

    Article  Google Scholar 

  • Thorpe, A. J., Clough, S. A., 1991: Mesoscale dynamics of cold fronts: Structures described by dropsoundings in FRONTS 87.Quart. J. Roy. Meteor. Soc.,117, 903–941.

    Article  Google Scholar 

  • Uccellini, L. W., Keyser, D., Brill, K. F., Wash, C. H., 1985: The Presidents' Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis.Mon. Wea. Kev.,113, 962–988.

    Article  Google Scholar 

  • Uccellini, L. W., 1990: Processes contributing to the rapid development of extratropical cyclones. Extratropical cyclones: The Erik Palmén Memorial Volume. Amer. Meteor. Soc. Boston, 81–105.

    Google Scholar 

  • Uccellini, L. W., Corfidi, S. F., Junker, N. W., Kocin, P. J., Olsen, D. A., 1992: Report on the surface analysis workshop held at the national meteorological center 25–28 March 1991.Bull. Amer. Meteor. Soc.,73, 459–472.

    Google Scholar 

  • Weather-Log, 1989: Weather Log for October 1989.Weather,44 [Suppl.].

  • Whitaker, J. S., Uccellini, L. W., Brill, K. F., 1988: A model based diagnostic study of the rapid development phase of the Presidents' Day cyclone.Mon. Wea Rev.,116, 2337–2365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 12 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appenzeller, C., Davies, H.C. PV morphology of a frontal-wave development. Meteorl. Atmos. Phys. 58, 21–40 (1996). https://doi.org/10.1007/BF01027554

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01027554

Keywords

Navigation