Skip to main content
Log in

Collision efficiency calculation model as a software tool for microphysics of electrified clouds

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

A study has been made of the development of a collision efficiency calculation model for the interaction of charged drops in an external electric field over an extended range of Reynolds numbers. The method of superposition of flow fields obtained from the numerical solutions of the Navier-Stokes equations in case of liquid drop was used for the calculations. The available Reynolds numbers range is 0 to 45. The model was developed as a program for IBM-PC compatible computers and has been tested with recently published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beard, K. V., Pruppacher, H. R., 1971: A wind tunnel investigation of collection kernels for small water drops in the air.Quart. J. Roy. Meteor. Soc.,97, 242–248.

    Google Scholar 

  • Beard, K. V., Grover, S. N., 1974: Numerical collision efficiencies for small raindrops colliding with micron size particles.J. Atmos. Sci.,31, 543–550.

    Google Scholar 

  • Beard, K. V., 1976: Terminal velocity and shape of cloud and precipitation drops aloft.J. Atmos. Sci.,33, 851–864.

    Google Scholar 

  • Belyaev, S. P., Kim, V. M., Matveev, V. N., 1984: On coagulation of charged and neutral cloud drops. Proceedings of the 9th International Cloud Physics Conference. Tallinn, USSR, v1, 127–130.

    Google Scholar 

  • Davis, M. H., 1964: Two charged spherical conductors in a uniform electric field.Quart. J. Mech. Appl. Math.,17, 499–511.

    Google Scholar 

  • Davis, M. H., 1965: The effect of electric charges and fields on collision of very small cloud drops. Proc. Intern. Cloud Physics Conf., Tokyo and Sapporo, Meteoror. Soc. Japan. 118–120.

  • Forsythe, G. E., Malcolm, M. A., Moler, C. B., 1977:Computer Methods for Mathematical Computations. Englewood Cliffs., N. J.: Prentice-Hall, 280 pp.

    Google Scholar 

  • Hocking, L. M., 1959: The collision efficiency of small drops.Quart. J. Roy. Meteor. Soc.,85, 44–50.

    Google Scholar 

  • Kim, V. M., Mamonova, I. G., 1988: On coagulation of charged and neutral drops radii 100–250 and 1–10 μm. (In Russian) Atmospheric electricity. Proceedings of III All Union Symposium. Leningrad Hydrometeoizdat, 123–126.

  • Klett, J. D., Davis, M. H., 1973: Theoretical collision efficiencies of cloud droplets at small Reynolds numbers.J. Atmos. Sci.,30, 107–117.

    Google Scholar 

  • Krasnogorskaya, N. V., 1965: The influence of electrostatic force on coagulation of particles of close sizes. (In Russian)Izvestia Acad. of Sci. USSR, Phys. Atmos. and Ocean,1, 339–345.

    Google Scholar 

  • Langmuir, I., 1948: The production of rain by chain reaction in cumulus clouds at temperatures above freezing.J. Meteorol.,5, 157–192.

    Google Scholar 

  • LeClair, B. P., Hameliec, A. E., Pruppacher, H. R., 1970: A numerical study of the drag on a sphere at low and intermediate Reynolds numbers.J. Atmos. Sci.,27, 308–315.

    Google Scholar 

  • Lee, I. Y., 1992: Comparison of cloud microphysics parameterizations for simulation of mesoscale clouds and precipitation.Atmos. Environ.,26A, 2699–2712.

    Google Scholar 

  • Lin, C. L., Lee, S. C., 1975: Collision efficiency of water drops in atmosphere.J. Atmos. Sci.,32, 1412–1418.

    Google Scholar 

  • Neizvestnyi, A. I., Kozbunenko, A. G., 1980: Experimental measurements of collection efficiency of water droplets of comparable sizes. (In Russian).Izvestia Academy of Sci. USSR, Phys. Atmos and Ocean.,16, 389–396.

    Google Scholar 

  • Ochs, H. T., Beard, K. V., 1984: Laboratory measurements of collection efficiencies for accretion.J. Atmos. Sci.,41, 863–867.

    Google Scholar 

  • Ochs, H. T., Czys, R. R., Beard, K. V., 1986: Laboratory measurements of coalescence efficiencies for small precipitation drops.J. Atmos. Sci.,43, 225–232.

    Google Scholar 

  • Plumlee, H. R., Semonin, R. G., 1965: Cloud droplet collision efficiency in electric fields.Tellus,18, 356–363.

    Google Scholar 

  • Proudman, I., Pearson, J. R. A., 1957: Expansion at small Reynolds number for the flow past a sphere and circular cylinder.Mech. Fluids,2, 237–249.

    Google Scholar 

  • Pruppacher, H. R., Klett, J. D., 1978:The Microphysics of Clouds and Precipitations, Dordrecht: D. Reidel, 714 pp.

    Google Scholar 

  • Rivkind, V. Ya., 1976: Investigation of problem of stationary motion of drop in flow of viscous incompressible liquid (In Russian).Doklady Acad. Sci. USSR.,227, 1071–1074.

    Google Scholar 

  • Rivkind, V. Ya., Riskin, G. M., 1976: The flow structure of the spherical drop motion in the liquid media in the range of transitional Reynolds numbers. (In Russian).Izvestia Acad. Sci. USSR, Mechanics of liquid and gas. 1, 8–15.

    Google Scholar 

  • Sartor, J. D. Miller, J. S., 1975: Relative cloud droplet trajectory computation. Proc. Intern. Cloud Physics Conf., Tokyo and Sapporo, Meteor. Soc. Japan, 108–112.

  • Schlamp, R. J., Grover, S. N., Pruppacher, H. R., Hameliec, A. E., 1976: A numerical investigation of the effect of electric charges and vertical external electric fields on the collision efficiency of cloud drops.J. Atmos. Sci.,33, 1747–1755.

    Google Scholar 

  • Schlamp, R. J., Grover, S. N., Pruppacher, H. R., Hameliec, A. E., 1979: A numerical investigation of the effect of electric efficiency of cloud drops: Part II.J. Atmos. Sci.,36, 339–349.

    Google Scholar 

  • Semonin, R. G., Plumlee, H. R., 1966: Collision efficiency of charged cloud droplets in electric fields.J. Geophys. Res.,71, 4271–4278.

    Google Scholar 

  • Shafrir, U., 1965: Some nonlinear effects in the collision efficiency problem.J. Geophys. Res.,70, 4491–4500.

    Google Scholar 

  • Takahashi, T., 1973: Measurement of electric charge of cloud droplets, drizzle, and raindrops.Rev. Geophys. Space Phys.,11, 903–924.

    Google Scholar 

  • Takami, H., Keller, H. B., 1969: Numerical solution of steady viscous flow around a circular cylinder at low Reynolds numbers.Phys. Fluids., [Suppl. II],12, 1151–1156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimin, N.N., Rivkind, V.Y. & Pachin, V.A. Collision efficiency calculation model as a software tool for microphysics of electrified clouds. Meteorl. Atmos. Phys. 53, 111–120 (1994). https://doi.org/10.1007/BF01031908

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01031908

Keywords

Navigation