Skip to main content
Log in

On the role of eddy mechanisms in the meridional energy transports

  • Published:
Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A Aims and scope Submit manuscript

Summary

Meridional transports of sensible and latent heat associated with standing eddies were computed from climatic mean data, and are compared with information available in the literature. The standing eddy flux of latent heat has a main maximum in the latitude of the subtropical anticyclones, where longitudinal contrasts in the latent heat content of the atmosphere are also pronounced. The standing eddy flux of sensible heat has, in winter, a main maximum in the latitude of the subpolar lows, where marked land-sea contrasts in temperature occur. Longitudinal variations in the energy content of the atmosphere account for constrasts in the latitudinal and seasonal pattern of the standing eddy fluxes of sensible and latent heat.

Zusammenfassung

Mit ortsfesten Störmechanismen verbundene Meridionaltransporte von fühlbarer und latenter Wärme werden auf Grund klimatologischer Daten berechnet und mit den in der Literatur verfügbaren Werten verglichen. Die Störungsbewegung von latenter Wärme hat ein Hauptmaximum in der Breitenlage der subtropischen Hochdruckzellen, wo auch die zonalen Unterschiede im latenten Wärmegehalt der Luft ausgeprägt sind. Die entsprechende Störungsbewegung der fühlbaren Wärme hat im Winter ein Hauptmaximum in der Breitenlage der subpolaren Tiefdruckgebiete, wo auch starke ozeanisch-kontinentale Temperaturgegensätze auftreten. Zonale Unterschiede im Energiegehalt der Atmosphäre bedingen breitenmäßige und jahreszeitliche Gegensätze in der Störungsbewegung von fühlbarer und latenter Wärme.

Résumé

On calcule ici au moyen de données climatologiques les transports méridiens de chaleurs latente et sensible liés à des mécanismes perturbateurs immobiles. Les valeurs ainsi obtenues sont comparées à celles que l'on trouve dans la littérature. Le mouvement perturbateur de la chaleur latente a un maximum principal dans les latitudes des cellules anticycloniques subtropicales. C'est là aussi que l'on rencontre de grandes différences zonales du contenu de l'air en chaleur latente. Le mouvement perturbateur correspondant de la chaleur sensible a, en hiver, un maximum principal dans les latitudes des dépressions subpolaires où l'on rencontre aussi de fortes oppositions de températures entre les continents et les océans. Des différences zonales du contenu de l'atmosphère en énergie provoquent des contradictions saisonnières et en latitude du mouvement perturbateur des chaleurs latente et sensible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannon, J. K., andL. P. Steele: Average Water Vapor Content of the Air. Geoph. Mem. No. 102, Meteor. Office, London, 1960.

    Google Scholar 

  2. Crutcher, R.: Meridional Cross-sections. Upper Winds over the Northern Hemisphere. U. S. Weather Bureau Tech. Pap. No. 41, Washington, D. C. (1961).

  3. Goldie, N., J. G. Moore, andE. E. Austin: Upper Air Temperatures over the World. Geoph. Mem. No. 101, Meteor. Office, London, 1957.

    Google Scholar 

  4. Hastenrath, S.: A Study of the Atmospheric Circulation between Equator and 60°N during the Winter and Summer Seasons. Proc., Fifth Techn. Conference on Hurricanes and Tropical Meteorology, Nov. 20–28, 1967, Caracas, 1967.

  5. Hastenrath, S.: A Study of the Atmospheric Energy Budget between Equator and 60°N during the Winter and Summer Seasons. Part I.: The Latitude-mean Conditions. Beitr. Phys. Atmosph. (in print.)

  6. Hastenrath, S.: A Study of the Atmospheric Energy Budget between Equator and 60°N during the Winter and Summer Seasons. Part II.: The Regional Pattern. Beitr. Phys. Atmosph. (in print.)

  7. Haurwitz, B., andJ. M. Austin: Climatology. New York and London: McGraw-Hill, 1944.

    Google Scholar 

  8. Mintz, Y.: Final Computations of the Mean Geostrophic Poleward Flux of Angular Momentum and of Sensible Heat in the Winter and Summer of 1949. Final Report, Contract AF 19(122)-48, Art. 5, UCLA, 1955.

  9. Mintz, Y.: The Total Energy Budget of the Atmosphere. Final Report, Contract AF 19(122)-48, Art. 13, UCLA, 1955.

  10. Oort, A. H.: On Estimates of the Atmospheric Energy Cycle. Mo. Wea. Rev.92, 483–493 (1964).

    Google Scholar 

  11. Peixoto, J. P.: Hemispheric Humidity Conditions during the Year 1950. Scient. Rep. No. 3, General Circulation Project, MIT, 1958.

  12. Peixoto, J. P.: Hemispheric Temperature Conditions during the Year 1950. Scient. Rep. No. 4, General Circulation Project, MIT, 1960.

  13. Priestley, C. H. B.: Heat Transport and Zonal Stress between Latitudes. Quart. J. Roy. Meteor. Soc.75, 28–40 (1949).

    Google Scholar 

  14. Starr, V. P., andJ. P. Peixoto: On the Global Balance of Water Vapor and the Hydrology of Deserts. Tellus10, 189–194 (1958).

    Google Scholar 

  15. Starr, V. P., andJ. P. Peixoto: On the Zonal Flux of Water Vapor in the Northern Hermisphere. Geof. pura appl.47, 199–203 (1960).

    Google Scholar 

  16. Starr, V. P., andJ. P. Peixoto: The Hemispheric Eddy Flux of Water Vapor and Its Implications for the Mechanics of the General Circulation. Archiv Met. Geophys. Biokl., A,14, 111–130 (1964).

    Google Scholar 

  17. Starr, V. P., J. P. Peixoto, andA. Crisi: Hemispheric Water Balance for the IGY. Tellus17, 463–472 (1965).

    Google Scholar 

  18. Starr, V. P., J. P. Peixoto, andG. C. Livadas: On the Meridional Flux of Water Vapor in the Northern Hemisphere. Geof. pura appl.39, 174–185 (1958).

    Google Scholar 

  19. Starr, V. P., andR. M. White: Schemes for the Study of Hemispheric Exchange Processes. Quart. J. Roy. Meteor. Soc.78, 407–410 (1952).

    Google Scholar 

  20. Starr, V. P., andR. M. White: Balance Requirements of the General Circulation. Geophys. Res. Papers No. 35, Cambridge, Mass., 1954.

  21. Szava-Kovats, J.: Verteilung der Luftfeuchtigkeit auf der Erde. Annal. Hydrogr.66, 373–378 (1938).

    Google Scholar 

  22. Tucker, G. B.: Evidence of a Mean Meridional Circulation in the Atmosphere from Surface Wind Observations. Quart. J. Roy. Meteor. Soc.83, 290–302 (1957).

    Google Scholar 

  23. U. S. Weather Bureau: Normal Weather Charts for the Northern Hemisphere. U. S. Weather Bureau Tech. Pap. No. 21, Washington, D. C., 1952.

  24. White, R. M.: The Meridional Eddy Flux of Energy. Quart. J. Roy. Meteor. Soc.77, 189–199 (1951).

    Google Scholar 

  25. White, R. M.: The Meridional Flux of Sensible Heat over the Northern Hemisphere. Tellus3, 83–88 (1951).

    Google Scholar 

  26. Willet, H. C., andF. Sanders: Descriptive meteorology. 2nd ed. New York: Academic Press Inc., 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 4 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hastenrath, S. On the role of eddy mechanisms in the meridional energy transports. Arch. Met. Geoph. Biokl. A. 17, 114–124 (1968). https://doi.org/10.1007/BF02247079

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02247079

Keywords

Navigation